Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays

Y. Hosoi, Y. Watanabe, R. Sugita, Y. Tanaka, K. Nagamine, T. Ono, K. Sakamoto

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 106 ~5 x 107 per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

Original languageEnglish
Pages (from-to)1325-1331
Number of pages7
JournalBritish Journal of Radiology
Volume68
Issue number816
DOIs
Publication statusPublished - 1995 Jan 1

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays'. Together they form a unique fingerprint.

Cite this