Abstract
Pores in ultra-low-k carbon-doped silicon oxide (SiOCH) film have been a serious problem because they produce fragile film strength, with the film incurring damage from integration and diffusion of Cu atoms in thermal annealing. To address this problem, we developed a practical large-radius neutral-beam-enhanced chemical vapour deposition process to precisely control the film structure so as to eliminate any pores in the film. We used the process with dimethoxy-tetramethyl-disiloxane (DMOTMDS) as a precursor to form a SiOCH film on an 8 inch Si wafer and obtained a non-porous film having an ultra-low k-value of 2.3 with sufficient modulus (>10 GPa). Analysing the film structure by experimental and theoretical techniques showed that symmetric linear Si-O molecular chains were grown and cross-linked to each other in the film. This particular film did not incur any damage from acid or alkali solution or oxygen plasma. Furthermore, the dense film almost completely resisted Cu diffusion into it during thermal annealing.
Original language | English |
---|---|
Article number | 395203 |
Journal | Journal of Physics D: Applied Physics |
Volume | 46 |
Issue number | 39 |
DOIs | |
Publication status | Published - 2013 Oct 2 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films