North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s

T. Suga, A. Kato, K. Hanawa

Research output: Contribution to journalReview articlepeer-review

109 Citations (Scopus)


North Pacific Tropical Water (NPTW) is characterized as a subsurface salinity maximum flowing in the North Equatorial Current and is the main source of salt for the North Pacific. We briefly describe the climatological features of its formation and circulation, and then examine temporal changes in its properties associated with the climate regime shift in the 1970s. We use a variety of data, which include the repeat hydrographic sections along 130°E, 137°E, 144°E and 155°E meridians, the hydrographic data from the Hawaii Ocean Time-series, the World Ocean Atlas 1994, and available gridded data of wind stress and evaporation. The classical idea that NPTW originates from the zone of the highest sea surface salinity at 20°-30°N centered around the international date line and spreads along the isopycnal geostrophic flow patterns is confirmed. Further, it is shown that the meridional extent of NPTW along 137°E is from 10°N to 23°N on average and the highest salinity core lies at about 15°N and 24.0σ(θ), and that the portion of NPTW north (south) of about 15°N originates from the formation region west (east) of the date line. NPTW in the 137°E section changed remarkably associated with the mid-1970s regime shift. North of 15°N NPTW increased both in its salinity and thickness while to the south of 15°N only its salinity increased and its thickness remained unchanged. The westward geostrophic velocity is increased significantly in both the southern and northern parts of NPTW. The northern thickening and speedup and the southern speedup increased NPTW transport across 137°E. The changes in the thermohaline forcing such as evaporation and Ekman salt convergence in the NPTW formation region possibly contributed to the increases in salinity in the southern part of NPTW, but not to that of the northern part, On the other hand, the increased Ekman pumping accounts for the increase of the NPTW inventory and transport at 137°E. The increased salinity of NPTW at 137°E, especially its northern portion, was presumably caused by an increase in its formation rate rather than changes in the sea surface salinity in its formation region; the thicker the NPTW layer is, the saltier is the core that tends to survive the mixing processes. (C) 2000 Elsevier Science Ltd.

Original languageEnglish
Pages (from-to)223-256
Number of pages34
JournalProgress in Oceanography
Issue number2-4
Publication statusPublished - 2000


Dive into the research topics of 'North Pacific Tropical Water: Its climatology and temporal changes associated with the climate regime shift in the 1970s'. Together they form a unique fingerprint.

Cite this