Numerical and experimental evaluation of cryogenic tensile strength of woven fabric-reinforced glass/epoxy composites using open hole specimens

Yasuhide Shindo, Shinya Watanabe, Tomo Takeda, Fumio Narita, Takuya Matsuda, Satoru Yamaki

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

A numerical and experimental evaluation of the tensile strength properties of woven glass fiber-reinforced polymer composite laminates at cryogenic temperatures was conducted by means of open hole specimens. Tensile tests were performed on specimens with a circular hole at room temperature, at 77 K, and at 4 K. The length of the hole edge damage zone corresponding to specimen failure was determined by microscopic examination of the fracture surfaces. A method based on finite element analysis was developed for estimating the cryogenic tensile strength of the unnotched woven laminates using the experimentally determined failure load and damage zone length. The results suggest that the tensile strength of woven composite laminates at cryogenic temperatures can be determined effectively by this approach.

Original languageEnglish
Pages (from-to)545-556
Number of pages12
JournalJournal of Mechanics of Materials and Structures
Volume6
Issue number1-4
DOIs
Publication statusPublished - 2011

Keywords

  • Cryogenic devices
  • Cryomechanics
  • Finite element method
  • Polymer-matrix composites
  • Strength
  • Tension test

Fingerprint

Dive into the research topics of 'Numerical and experimental evaluation of cryogenic tensile strength of woven fabric-reinforced glass/epoxy composites using open hole specimens'. Together they form a unique fingerprint.

Cite this