Numerical and experimental inverstigations on a polymer/carbon nanotube nanocomposite strain sensor

Ning Hu, Yoshifumi Karube, Hisao Fukunaga

Research output: Contribution to conferencePaperpeer-review

Abstract

In this work, the piezoresistive behavior of a strain sensor made from a polymer/carbon nanotube nanocomposite has been investigated. To underpin the working principle of the sensor, we propose an improved 3D statistical resistor network model by incorporating the tunneling effect among randomly distributed CNTs in a polymer matrix. Moreover, the strain sensor has been experimentally fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWNT) fillers. The piezoresistivity of this nanocomposite strain sensor has been experimentally investigated. The numerical results obtained from the 3D statistical resistor network model combined with the fiber reorientation model agree very well with the experimental measurements. From numerical and experimental results, as compared to the traditional strain gauges, much higher sensitivity can be obtained in this nanocomposite sensor. The tunneling effect is highlighted to be the major working mechanism of the sensor under small strains. By using the proposed successful numerical model, the influences of various parameters on the sensitivity of the new sensor have been numerically investigated in detail. The influence of various experimental parameters on the sensitivity of the sensor has also been studied. Both results have shown that higher resistance of the sensor leads to higher sensitivity of the sensor. Furthermore, the different behaviors of the sensor under tension and compression have been investigated.

Original languageEnglish
Publication statusPublished - 2008 Dec 1
EventUS-Japan Conference on Composite Materials 2008, US-Japan 2008 - Tokyo, Japan
Duration: 2008 Jun 62008 Jun 7

Other

OtherUS-Japan Conference on Composite Materials 2008, US-Japan 2008
Country/TerritoryJapan
CityTokyo
Period08/6/608/6/7

Keywords

  • Carbon nanotube
  • Nanocomposite
  • Piezoresistivity
  • Polymer
  • Strain sensor

ASJC Scopus subject areas

  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Numerical and experimental inverstigations on a polymer/carbon nanotube nanocomposite strain sensor'. Together they form a unique fingerprint.

Cite this