Abstract
Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE ≈ 20°. Such a behaviour is consistent with Giovannini-Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system.
Original language | English |
---|---|
Article number | 14777 |
Journal | Nature communications |
Volume | 8 |
DOIs | |
Publication status | Published - 2017 Mar 16 |
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- General
- Physics and Astronomy(all)