TY - JOUR
T1 - ON ANALYTICITY UP TO THE BOUNDARY FOR CRITICAL QUASI-GEOSTROPHIC EQUATION IN THE HALF SPACE
AU - Iwabuchi, Tsukasa
N1 - Funding Information:
2020 Mathematics Subject Classification. Primary: 35Q35; Secondary: 35Q86. Key words and phrases. critical dissipation, analyticity in spacetime, half space, Dirichlet boundary condition . The author was supported by the Grant-in-Aid for Young Scientists (A) (No. 17H04824) from JSPS.
Publisher Copyright:
© 2022 American Institute of Mathematical Sciences. All rights reserved.
PY - 2022/4
Y1 - 2022/4
N2 - We study the Cauchy problem for the surface quasi-geostrophic equation with the critical dissipation in the two dimensional half space under the homogeneous Dirichlet boundary condition. We show the global existence, the uniqueness and the analyticity of solutions, and the real analyticity up to the boundary is obtained. We will show a natural ways to estimate the nonlinear term for functions satisfying the Dirichlet boundary condition.
AB - We study the Cauchy problem for the surface quasi-geostrophic equation with the critical dissipation in the two dimensional half space under the homogeneous Dirichlet boundary condition. We show the global existence, the uniqueness and the analyticity of solutions, and the real analyticity up to the boundary is obtained. We will show a natural ways to estimate the nonlinear term for functions satisfying the Dirichlet boundary condition.
KW - Dirichlet boundary condition
KW - analyticity in spacetime
KW - critical dissipation
KW - half space
UR - http://www.scopus.com/inward/record.url?scp=85128367448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128367448&partnerID=8YFLogxK
U2 - 10.3934/cpaa.2022016
DO - 10.3934/cpaa.2022016
M3 - Article
AN - SCOPUS:85128367448
SN - 1534-0392
VL - 21
SP - 1209
EP - 1224
JO - Communications on Pure and Applied Analysis
JF - Communications on Pure and Applied Analysis
IS - 4
ER -