On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated turbulence

Yi Zhou, Koji Nagata, Yasuhiko Sakai, Yasumasa Ito, Toshiyuki Hayase

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Direct numerical simulations were performed to investigate the topological evolution of turbulence generated by a single square grid. Immediately behind the single square grid (i.e., in the irrotational dissipation region), the conditional mean trajectories (CMTs) of R and Q are distinctly different from those in homogeneous isotropic turbulence (HIT), where R and Q are the third and second invariants, respectively, of the velocity gradient tensor. In this region, the non-local influence of the pressure Hessian is dominant, which causes irrotational viscous dissipation. The anisotropic part of the pressure Hessian may be responsible for the irrotational viscous dissipation found at the turbulent/nonturbulent interface in turbulent jets [C. B. da Silva and J. C. F. Pereira, "Invariants of the velocity-gradient, rate-of-strain, and rate-ofrotation tensors across the turbulent/nonturbulent interface in jets," Phys. Fluids 20, 055101 (2008) and Watanabe et al., "Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet," J. Fluid Mech. 758, 754 (2014)]. In the transition region, the CMTs of R and Q gradually acquire an evolution pattern similar to that in HIT. The expansion of the (R,Q) map at Q > 0 is associated with the effects of the restricted Euler term. Finally, in the fully turbulent region, the CMTs of R and Q demonstrate a clockwise evolution toward a point close to the origin. However, the cyclic spiraling seen in HIT is not found. The lack of the cyclic evolution may be attributed to the considerably large effect of the viscous term owing to the relatively small local Reynolds number. On average, the combined influences of the restricted Euler term and anisotropic part of the pressure Hessian contribute to the generation of small-scale motions, and the viscous term tends to remove small-scale motions.

Original languageEnglish
Article number075107
JournalPhysics of Fluids
Volume27
Issue number7
DOIs
Publication statusPublished - 2015 Jul

Fingerprint

Dive into the research topics of 'On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated turbulence'. Together they form a unique fingerprint.

Cite this