TY - JOUR

T1 - On the evolution of the invariants of the velocity gradient tensor in single-square-grid-generated turbulence

AU - Zhou, Yi

AU - Nagata, Koji

AU - Sakai, Yasuhiko

AU - Ito, Yasumasa

AU - Hayase, Toshiyuki

N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.

PY - 2015/7

Y1 - 2015/7

N2 - Direct numerical simulations were performed to investigate the topological evolution of turbulence generated by a single square grid. Immediately behind the single square grid (i.e., in the irrotational dissipation region), the conditional mean trajectories (CMTs) of R and Q are distinctly different from those in homogeneous isotropic turbulence (HIT), where R and Q are the third and second invariants, respectively, of the velocity gradient tensor. In this region, the non-local influence of the pressure Hessian is dominant, which causes irrotational viscous dissipation. The anisotropic part of the pressure Hessian may be responsible for the irrotational viscous dissipation found at the turbulent/nonturbulent interface in turbulent jets [C. B. da Silva and J. C. F. Pereira, "Invariants of the velocity-gradient, rate-of-strain, and rate-ofrotation tensors across the turbulent/nonturbulent interface in jets," Phys. Fluids 20, 055101 (2008) and Watanabe et al., "Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet," J. Fluid Mech. 758, 754 (2014)]. In the transition region, the CMTs of R and Q gradually acquire an evolution pattern similar to that in HIT. The expansion of the (R,Q) map at Q > 0 is associated with the effects of the restricted Euler term. Finally, in the fully turbulent region, the CMTs of R and Q demonstrate a clockwise evolution toward a point close to the origin. However, the cyclic spiraling seen in HIT is not found. The lack of the cyclic evolution may be attributed to the considerably large effect of the viscous term owing to the relatively small local Reynolds number. On average, the combined influences of the restricted Euler term and anisotropic part of the pressure Hessian contribute to the generation of small-scale motions, and the viscous term tends to remove small-scale motions.

AB - Direct numerical simulations were performed to investigate the topological evolution of turbulence generated by a single square grid. Immediately behind the single square grid (i.e., in the irrotational dissipation region), the conditional mean trajectories (CMTs) of R and Q are distinctly different from those in homogeneous isotropic turbulence (HIT), where R and Q are the third and second invariants, respectively, of the velocity gradient tensor. In this region, the non-local influence of the pressure Hessian is dominant, which causes irrotational viscous dissipation. The anisotropic part of the pressure Hessian may be responsible for the irrotational viscous dissipation found at the turbulent/nonturbulent interface in turbulent jets [C. B. da Silva and J. C. F. Pereira, "Invariants of the velocity-gradient, rate-of-strain, and rate-ofrotation tensors across the turbulent/nonturbulent interface in jets," Phys. Fluids 20, 055101 (2008) and Watanabe et al., "Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet," J. Fluid Mech. 758, 754 (2014)]. In the transition region, the CMTs of R and Q gradually acquire an evolution pattern similar to that in HIT. The expansion of the (R,Q) map at Q > 0 is associated with the effects of the restricted Euler term. Finally, in the fully turbulent region, the CMTs of R and Q demonstrate a clockwise evolution toward a point close to the origin. However, the cyclic spiraling seen in HIT is not found. The lack of the cyclic evolution may be attributed to the considerably large effect of the viscous term owing to the relatively small local Reynolds number. On average, the combined influences of the restricted Euler term and anisotropic part of the pressure Hessian contribute to the generation of small-scale motions, and the viscous term tends to remove small-scale motions.

UR - http://www.scopus.com/inward/record.url?scp=84937214785&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937214785&partnerID=8YFLogxK

U2 - 10.1063/1.4926472

DO - 10.1063/1.4926472

M3 - Article

AN - SCOPUS:84937214785

SN - 1070-6631

VL - 27

JO - Physics of Fluids

JF - Physics of Fluids

IS - 7

M1 - 075107

ER -