TY - GEN
T1 - On the performance of downstream traffic distribution scheme in fiber-wireless networks
AU - Honda, Masahiro
AU - Nishiyama, Hiroki
AU - Nomura, Hiroto
AU - Yada, Takeshi
AU - Yamada, Hiroshi
AU - Kato, Nei
PY - 2011
Y1 - 2011
N2 - Fiber-Wireless (FiWi) access networks, have rapidly matured as a last mile Internet access network solution due to their novel combination of Ethernet Passive Optical Networks (EPON) as a backhaul and Wireless Mesh Networks (WMN) as an access network. The high bandwidth provided by the optical lines, as well as the flexibility offered by the wireless network, offers a great degree of cost-efficiency in terms of sharing an optical line with a number of simultaneous users. In a FiWi network, Gateways (GWs) located between the EPON and WMN serve both the function of an Optical Network Unit (ONU) in the EPON and a mesh router in WMN. Since all of the downstream from the EPON to the WMN and all of the upstream from the WMN to the EPON must be exchanged at GWs, traffic distribution technique between GWs is necessary to achieve efficient utilization of the network resources. Controlling the downstream traffic is a significant issue in preventing performance degradation due to network congestion at the GWs, because the bandwidth of WMN is generally narrower than that of the EPON. In addition, the number of hops from a GW to an end-user in the WMN needs to be taken into account in the traffic distribution process, because the increased number of hops results in lower communication efficiency due to mutual interferences between adjacent links and effects of cross traffic. Therefore, in this paper, we focus on the downstream controlling of FiWi networks, and propose a traffic distribution scheme which utilizes an aspect of EPON to properly distribute traffic load among GWs. A hop count limitation mechanism is adopted to avoid throughput degradation caused by increased wireless interference and effects of cross traffic in the WMN. Simulation results show a trade-off relationship between fair load balancing among GWs and high throughput for end-users, and the proposed scheme can accommodate it by regulating hop count limitation.
AB - Fiber-Wireless (FiWi) access networks, have rapidly matured as a last mile Internet access network solution due to their novel combination of Ethernet Passive Optical Networks (EPON) as a backhaul and Wireless Mesh Networks (WMN) as an access network. The high bandwidth provided by the optical lines, as well as the flexibility offered by the wireless network, offers a great degree of cost-efficiency in terms of sharing an optical line with a number of simultaneous users. In a FiWi network, Gateways (GWs) located between the EPON and WMN serve both the function of an Optical Network Unit (ONU) in the EPON and a mesh router in WMN. Since all of the downstream from the EPON to the WMN and all of the upstream from the WMN to the EPON must be exchanged at GWs, traffic distribution technique between GWs is necessary to achieve efficient utilization of the network resources. Controlling the downstream traffic is a significant issue in preventing performance degradation due to network congestion at the GWs, because the bandwidth of WMN is generally narrower than that of the EPON. In addition, the number of hops from a GW to an end-user in the WMN needs to be taken into account in the traffic distribution process, because the increased number of hops results in lower communication efficiency due to mutual interferences between adjacent links and effects of cross traffic. Therefore, in this paper, we focus on the downstream controlling of FiWi networks, and propose a traffic distribution scheme which utilizes an aspect of EPON to properly distribute traffic load among GWs. A hop count limitation mechanism is adopted to avoid throughput degradation caused by increased wireless interference and effects of cross traffic in the WMN. Simulation results show a trade-off relationship between fair load balancing among GWs and high throughput for end-users, and the proposed scheme can accommodate it by regulating hop count limitation.
UR - http://www.scopus.com/inward/record.url?scp=79959316846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959316846&partnerID=8YFLogxK
U2 - 10.1109/WCNC.2011.5779172
DO - 10.1109/WCNC.2011.5779172
M3 - Conference contribution
AN - SCOPUS:79959316846
SN - 9781612842547
T3 - 2011 IEEE Wireless Communications and Networking Conference, WCNC 2011
SP - 434
EP - 439
BT - 2011 IEEE Wireless Communications and Networking Conference, WCNC 2011
T2 - 2011 IEEE Wireless Communications and Networking Conference, WCNC 2011
Y2 - 28 March 2011 through 31 March 2011
ER -