Optical scanner based on a NiMnGa thin film microactuator

M. Kohl, S. Hoffmann, Y. Liu, M. Ohtsuka, T. Takagi

Research output: Contribution to journalConference articlepeer-review

31 Citations (Scopus)


An optical scanner of 9 × 3 × 5 mm3 size is presented, which is driven by a microactuator of Ni2MnGa. The microactuator is fabricated by magnetron sputtering of a Ni2MnGa thin film and subsequent photochemical micromachining. For operation of the scanner, a novel mechanism is proposed, which is based on the antagonism of magnetic and shape recovery forces. Thus, large bending forces in both actuation directions and low biasing forces can be generated simultaneously in a single microdevice. This mechanism is used to realize a large scanning angle of 50 deg. The dynamics of motion is characterized by heat-transfer times. Typical heating and cooling time constants are 2 and 16 ms, respectively. Below a critical frequency of about 55 Hz, the scanning angle is independent of the actuation frequency.

Original languageEnglish
Pages (from-to)1185-1188
Number of pages4
JournalJournal De Physique. IV : JP
Volume112 II
Publication statusPublished - 2003 Oct
EventInternational Conference on Martensitic Transformations - Espoo, Finland
Duration: 2002 Jun 102002 Jun 14


Dive into the research topics of 'Optical scanner based on a NiMnGa thin film microactuator'. Together they form a unique fingerprint.

Cite this