TY - JOUR
T1 - Optimizing the radiosensitive liquid-core microcapsules for the targeting of chemotherapeutic agents
AU - Harada, S.
AU - Ehara, S.
AU - Ishii, K.
AU - Yamazaki, H.
AU - Matsuyama, S.
AU - Kamiya, T.
AU - Sakai, T.
AU - Arakawa, K.
AU - Sato, T.
AU - Oikawa, S.
PY - 2007/7
Y1 - 2007/7
N2 - Microcapsules consisting of alginate and hyaluronic acid that can be decomposed by radiation are currently under development. In this study, the composition of the microcapsule material was optimized by changing the amounts of alginate and hyaluronic acid. Solutions of 0.025%, 0.05%, 0.1%, 0.2%, or 0.4% (wt./vol.) hyaluronic acid were mixed into a 0.2% alginate solution. To these mixtures, carboplatin (0.2 mmol) was added and the resulting material was used for the capsule preparation. The capsules were prepared by spraying the material into a CaCl2 solution (0.34 mol/l) using a microatomizer. These capsules were irradiated by a single dose of 2, 5, or 10 Gy 60Co γ-ray radiation. Immediately after irradiation, the releasing of core content of microcapsule was determined, using a micro particle induced X-ray emission (PIXE) camera. The average diameter of the microcapsules was 22.3 ± 3.3 μm, and that of the liquid core was 10.2 ± 4.3 μm. The maximum radiation-induced content release was observed with liquid-core microcapsules containing 0.1% hyaluronic acid and 0.2% alginate. Our liquid-core microcapsules suggest a new potential use for radiation: the targeted delivery of the chemotherapeutic agents or radiosensitizers. This offers the prospect of increased combined effectiveness of radiation with chemotherapy or radiosensitization and decreased adverse side effects.
AB - Microcapsules consisting of alginate and hyaluronic acid that can be decomposed by radiation are currently under development. In this study, the composition of the microcapsule material was optimized by changing the amounts of alginate and hyaluronic acid. Solutions of 0.025%, 0.05%, 0.1%, 0.2%, or 0.4% (wt./vol.) hyaluronic acid were mixed into a 0.2% alginate solution. To these mixtures, carboplatin (0.2 mmol) was added and the resulting material was used for the capsule preparation. The capsules were prepared by spraying the material into a CaCl2 solution (0.34 mol/l) using a microatomizer. These capsules were irradiated by a single dose of 2, 5, or 10 Gy 60Co γ-ray radiation. Immediately after irradiation, the releasing of core content of microcapsule was determined, using a micro particle induced X-ray emission (PIXE) camera. The average diameter of the microcapsules was 22.3 ± 3.3 μm, and that of the liquid core was 10.2 ± 4.3 μm. The maximum radiation-induced content release was observed with liquid-core microcapsules containing 0.1% hyaluronic acid and 0.2% alginate. Our liquid-core microcapsules suggest a new potential use for radiation: the targeted delivery of the chemotherapeutic agents or radiosensitizers. This offers the prospect of increased combined effectiveness of radiation with chemotherapy or radiosensitization and decreased adverse side effects.
KW - Liquid-core microcapsule
KW - Particle induced X-ray emission camera
KW - Radiation targeting
UR - http://www.scopus.com/inward/record.url?scp=34249876216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249876216&partnerID=8YFLogxK
U2 - 10.1016/j.nimb.2007.02.099
DO - 10.1016/j.nimb.2007.02.099
M3 - Article
AN - SCOPUS:34249876216
SN - 0168-583X
VL - 260
SP - 164
EP - 168
JO - Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
JF - Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
IS - 1
ER -