TY - JOUR
T1 - Paleoceanographic conditions at approximately 20 and 70 ka recorded in Kikaithyris hanzawai (Brachiopoda) shells
AU - Takizawa, Mamoru
AU - Takayanagi, Hideko
AU - Yamamoto, Koshi
AU - Abe, Osamu
AU - Sasaki, Keiichi
AU - Iryu, Yasufumi
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/10/15
Y1 - 2017/10/15
N2 - The δ13C and δ18O values of fossil brachiopod shells have been widely used as paleoenvironmental proxies. In this study, we investigated intrashell and intraspecific variations in the isotopic and minor element concentrations of well-preserved shells of the brachiopod Kikaithyris hanzawai (Yabe) from the last glacial period (∼20 ka [Last Glacial Maximum; LGM] and ∼70 ka [Marine Isotope Stage 4; MIS4]), collected in the Central Ryukyus, and used these data to estimate the paleoceanographic conditions (seawater temperature, concentration of dissolved inorganic carbon [DIC], and δ13C value of DIC [δ13CDIC]). The δ13C and δ18O profiles along the maximum growth axis, obtained from the inner shell surface, show three distinct intervals, corresponding to changes in shell morphology. These results suggest that the bulk isotopic compositions of brachiopods with complex shell morphologies are unsuitable for paleoenvironmental reconstructions. Nevertheless, there exists a specific shell portion with relatively small intrashell and intraspecific variations. The past seawater temperatures derived from the δ18O values of this portion are consistent with the alkenone- and planktic foraminiferal Mg/Ca-based past seawater temperatures reported in previous studies. The past δ13CDIC values estimated from the δ13C values of the specific shell portion are within the range of the past δ13CDIC values calculated from known atmospheric and oceanographic parameters. The past DIC concentrations reconstructed from the brachiopod-based δ13CDIC values are lower than the present concentrations in the East China Sea, which can be explained by low partial pressure of CO2 during the last glacial period. These results indicate that the δ13C and δ18O values obtained from K. hanzawai shells are potential paleoenvironmental indicators. The intrashell and intraspecific variations in the K. hanzawai shells are different for each minor element. Some anomalously high Mn and Fe concentrations in the shells are probably caused by metabolic factor(s), not by meteoric diagenesis. This suggests that the minor element concentrations are useful but not perfect for distinguishing diagenetically altered and unaltered portions of the shells of K. hanzawai in the studied succession.
AB - The δ13C and δ18O values of fossil brachiopod shells have been widely used as paleoenvironmental proxies. In this study, we investigated intrashell and intraspecific variations in the isotopic and minor element concentrations of well-preserved shells of the brachiopod Kikaithyris hanzawai (Yabe) from the last glacial period (∼20 ka [Last Glacial Maximum; LGM] and ∼70 ka [Marine Isotope Stage 4; MIS4]), collected in the Central Ryukyus, and used these data to estimate the paleoceanographic conditions (seawater temperature, concentration of dissolved inorganic carbon [DIC], and δ13C value of DIC [δ13CDIC]). The δ13C and δ18O profiles along the maximum growth axis, obtained from the inner shell surface, show three distinct intervals, corresponding to changes in shell morphology. These results suggest that the bulk isotopic compositions of brachiopods with complex shell morphologies are unsuitable for paleoenvironmental reconstructions. Nevertheless, there exists a specific shell portion with relatively small intrashell and intraspecific variations. The past seawater temperatures derived from the δ18O values of this portion are consistent with the alkenone- and planktic foraminiferal Mg/Ca-based past seawater temperatures reported in previous studies. The past δ13CDIC values estimated from the δ13C values of the specific shell portion are within the range of the past δ13CDIC values calculated from known atmospheric and oceanographic parameters. The past DIC concentrations reconstructed from the brachiopod-based δ13CDIC values are lower than the present concentrations in the East China Sea, which can be explained by low partial pressure of CO2 during the last glacial period. These results indicate that the δ13C and δ18O values obtained from K. hanzawai shells are potential paleoenvironmental indicators. The intrashell and intraspecific variations in the K. hanzawai shells are different for each minor element. Some anomalously high Mn and Fe concentrations in the shells are probably caused by metabolic factor(s), not by meteoric diagenesis. This suggests that the minor element concentrations are useful but not perfect for distinguishing diagenetically altered and unaltered portions of the shells of K. hanzawai in the studied succession.
KW - Brachiopod
KW - Carbon isotope
KW - DIC concentration
KW - Last glacial period
KW - Minor element
KW - Oxygen isotope
KW - Ryukyu Islands
KW - Seawater temperature
UR - http://www.scopus.com/inward/record.url?scp=85027570847&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027570847&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2017.08.002
DO - 10.1016/j.gca.2017.08.002
M3 - Article
AN - SCOPUS:85027570847
SN - 0016-7037
VL - 215
SP - 189
EP - 213
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -