Passive spine gripper for free-climbing robot in extreme terrain

Kenji Nagaoka, Hayato Minote, Kyohei Maruya, Yuki Shirai, Kazuya Yoshida, Takeshi Hakamada, Hirotaka Sawada, Takashi Kubota

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


In this letter, we present a passive spine gripper that can hold rough rocky surfaces of boulders on cliff walls, and we discuss its application to a four-limbed robot for free-climbing in extreme terrain. The limbed robot has four degrees of freedom in each limb, where three are to drive joints of the limb and one for releasing the gripper. The fine spine of the proposed gripper also enables it to passively and adaptively latch on to microscopic asperities of the rough surface, and it is thus an efficient mechanism. In this letter, we present the fundamental design and mechanism of the proposed gripper, after which we introduce its static gripping model. We verify the gripping model by the experimental gripping performance of the prototype gripper. We show a lightweight four-limbed robot that is equipped with the grippers mounted on each limb. To evaluate the climbing capabilities of the robot, we use it to perform climbing experiments on a rugged and steep slope. The results show that the prototype can safely climb over such challenging terrain that is similar to a gravity offload system.

Original languageEnglish
Pages (from-to)1765-1770
Number of pages6
JournalIEEE Robotics and Automation Letters
Issue number3
Publication statusPublished - 2018 Jul


  • climbing robots
  • grippers and other end-effectors
  • Space robotics and automation


Dive into the research topics of 'Passive spine gripper for free-climbing robot in extreme terrain'. Together they form a unique fingerprint.

Cite this