Performance of creep crack growth on W strengthened 9-12Cr steel

K. I. Kobayashi, S. Shimizu, A. Fuji, A. T. Yokobori, M. Hirohashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes the properties of the creep crack growth in W strengthened Cr steel, newly developed for turbine rotors in ultra super critical coal fired power plant (USC). This material shows longer creep lives when compared to conventional heat resistant materials, such as SUS304 or 2.25Cr-1Mo steels. Thermal stresses induced by temperature fluctuations due to start-and-stop operation in high temperature machines and structures could be reduced due to its high thermal conductivity and low thermal expansion rate. However, since its creep ductility at rupture has been recognized as relatively low, a series of creep crack growth tests have been systemically conducted to assess the material performance controlling the initial stress intensity factor K with the use of the CT type specimen. The time rate of creep crack growth was evaluated as three parameters: stress intensity factor K, the net stress σnet and C* / creep J-integral. The minimum rate was achieved at the early stage of creep life. Although the time rate behavior changed with the test temperature and initial load, it was expressed as a function of power law during the acceleration period for each test. However, when the data were arranged using the parameters of K and σnet, the coefficient in the power law depended on the temperature and the initial value of K at loading. In contrast to these, the correlation between the creep crack growth rate and C* integral had almost the same coefficient, even when the temperature and the initial load were changed, and their relationship was plotted within a factor of two. It was also found that the creep crack growth rate was about ten times larger than that of 2.25Cr-1Mo steel at the same value of C* integral.

Original languageEnglish
Title of host publication11th International Conference on Fracture 2005, ICF11
Pages3096-3101
Number of pages6
Publication statusPublished - 2005
Externally publishedYes
Event11th International Conference on Fracture 2005, ICF11 - Turin, Italy
Duration: 2005 Mar 202005 Mar 25

Publication series

Name11th International Conference on Fracture 2005, ICF11
Volume4

Other

Other11th International Conference on Fracture 2005, ICF11
Country/TerritoryItaly
CityTurin
Period05/3/2005/3/25

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology

Fingerprint

Dive into the research topics of 'Performance of creep crack growth on W strengthened 9-12Cr steel'. Together they form a unique fingerprint.

Cite this