TY - JOUR
T1 - PeV-scale supersymmetry from new inflation
AU - Nakayama, Kazunori
AU - Takahashi, Fuminobu
PY - 2012/5
Y1 - 2012/5
N2 - We show that heavy supersymmetric particles around O(100) TeV to O(1) PeV naturally appear in new inflation in which the Higgs boson responsible for the breaking of U(1) B-L plays the role of inflaton. Most important, the supersymmetric breaking scale is bounded above by the inflationary dynamics, in order to suppress the Coleman-Weinberg potential which would otherwise spoil the slow-roll inflation. Our scenario has rich phenomenological and cosmological implications: the Higgs boson mass at around 125 GeV can be easily explained, non-thermal leptogenesis works automatically, the gravitino production from inflaton decay is suppressed, the dark matter is either the lightest neutralino or the QCD axion, and the upper bound on the inflation scale for the modulus stabilization can be marginally satisfied.
AB - We show that heavy supersymmetric particles around O(100) TeV to O(1) PeV naturally appear in new inflation in which the Higgs boson responsible for the breaking of U(1) B-L plays the role of inflaton. Most important, the supersymmetric breaking scale is bounded above by the inflationary dynamics, in order to suppress the Coleman-Weinberg potential which would otherwise spoil the slow-roll inflation. Our scenario has rich phenomenological and cosmological implications: the Higgs boson mass at around 125 GeV can be easily explained, non-thermal leptogenesis works automatically, the gravitino production from inflaton decay is suppressed, the dark matter is either the lightest neutralino or the QCD axion, and the upper bound on the inflation scale for the modulus stabilization can be marginally satisfied.
KW - inflation
KW - leptogenesis
KW - particle physics - cosmology connection
KW - physics of the early universe
UR - http://www.scopus.com/inward/record.url?scp=84861805882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861805882&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2012/05/035
DO - 10.1088/1475-7516/2012/05/035
M3 - Article
AN - SCOPUS:84861805882
SN - 1475-7516
VL - 2012
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 5
M1 - 035
ER -