Abstract
The compositional regions for primitive (P) and face-centered (F) icosahedral quasicrystals (iQc) have been determined to be around Zn84Mg9Zr7 and Zn75Mg18Zr6, respectively. A 1/1 approximant of the F-type iQc was found to have a composition around Zn77Mg18Zr5. A similar tendency has been verified for the Zn-Mg-Hf system. No stable iQc was observed in the Zn-Mg-Ti system. High-resolution X-ray measurements performed with synchrotron radiation showed that the stable iQcs are highly ordered and contain less phason disorder. High-angle annular dark field (HAADF) scanning transmission electron microscopy observation of the 1/1 Zn-Mg-Hf approximant effectively revealed the Hf positions in the structure, whose local contrasts can be reasonably interpreted by a structural model where icosahedral and dodecahedral Hf clusters are mutually interpenetrated. Similar appearances of local contrasts were frequently observed in HAADF images of the F-type iQc, indicating that the iQc structure is also build up of icosahedral clusters that are almost identical to those in the 1/1 approximant.
Original language | English |
---|---|
Pages (from-to) | 4727-4735 |
Number of pages | 9 |
Journal | Acta Materialia |
Volume | 57 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2009 Sept |
Externally published | Yes |
Keywords
- Bergman cluster
- Quasicrystal
- Structure
- Zinc-magnesium-zirconium
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys