TY - JOUR
T1 - Photoinduced microsecond-charge-separation in retinyl-C60 dyad
AU - Yamazaki, Mariko
AU - Araki, Yasuyuki
AU - Fujitsuka, Mamoru
AU - Ito, Osamu
PY - 2001/9/27
Y1 - 2001/9/27
N2 - Intramolecular photoinduced charge separation and recombination processes in a retinyl-C60 dyad molecule (Ret-C60) have been investigated in various solvents by time-resolved absorption and fluorescence techniques. Upon laser excitation of the C60-moiety in nonpolar toluene, the intersystem crossing proceeded from the excited singlet state of the C60-moiety (Ret-1C60*) to the excited triplet state (Ret-3C60*), followed by energy transfer yielding the excited triplet state of the retinyl-moiety (3Ret*-C60) without charge separation. On the other hand, in polar solvents such as N,N-dimethylformamide and benzonitrile, the charge separation occurred from Ret-1C60* at rate on the order of 1010 s-1. The quantum yield was close to unity in these polar solvents. Most parts of the ion pair (Ret.+-C60.-) changed to Ret-3C60* and 3Ret*-C60by the charge recombination which took place at rate on the order of 109 s-1. However, some parts of the charge-separated state were kept in microsecond time-region: The lifetimes of Ret.+-C60.- were 16 μs and 19 μs in DMF and benzonitrile, respectively, which were as long as those of Ret-3C60* and 3Ret*-C60, suggesting an equilibrium between the charge-separated state and the excited triplet states.
AB - Intramolecular photoinduced charge separation and recombination processes in a retinyl-C60 dyad molecule (Ret-C60) have been investigated in various solvents by time-resolved absorption and fluorescence techniques. Upon laser excitation of the C60-moiety in nonpolar toluene, the intersystem crossing proceeded from the excited singlet state of the C60-moiety (Ret-1C60*) to the excited triplet state (Ret-3C60*), followed by energy transfer yielding the excited triplet state of the retinyl-moiety (3Ret*-C60) without charge separation. On the other hand, in polar solvents such as N,N-dimethylformamide and benzonitrile, the charge separation occurred from Ret-1C60* at rate on the order of 1010 s-1. The quantum yield was close to unity in these polar solvents. Most parts of the ion pair (Ret.+-C60.-) changed to Ret-3C60* and 3Ret*-C60by the charge recombination which took place at rate on the order of 109 s-1. However, some parts of the charge-separated state were kept in microsecond time-region: The lifetimes of Ret.+-C60.- were 16 μs and 19 μs in DMF and benzonitrile, respectively, which were as long as those of Ret-3C60* and 3Ret*-C60, suggesting an equilibrium between the charge-separated state and the excited triplet states.
UR - http://www.scopus.com/inward/record.url?scp=0035960226&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035960226&partnerID=8YFLogxK
U2 - 10.1021/jp0105490
DO - 10.1021/jp0105490
M3 - Article
AN - SCOPUS:0035960226
SN - 1089-5639
VL - 105
SP - 8615
EP - 8622
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 38
ER -