TY - JOUR
T1 - Photoluminescence and structural similarity of crystals with oxidefluoride stacking structure and oxyfluoride glass
AU - Shinozaki, Kenji
AU - Sukenaga, Sohei
AU - Ohara, Koji
N1 - Funding Information:
Acknowledgements The synchrotron radiation experiments were performed at BL04B2 and BL14B2 at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2016B1823 and 2017B1008). This work was supported by JSPS KAKENHI Grant No. 19K15663.
Publisher Copyright:
© 2020 The Ceramic Society of Japan. All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - In this study, we developed a highly efficient photoluminescent glass from the design of a shortmedium range structure and the photoluminescence (PL) of a fluoroborate glass. We investigated PL and the structures of BaMgBO3F ceramics and the B2O3-added composition of glasses and glass-ceramics. The glass showed higher quantum yield (QY) than ceramic samples, i.e., the QY was 95 % for glass and 51 % for ceramics, by a 395 nm excitation. The glass can contain a large amount of emission centers with small concentration quenching, and 15 % Eu-doped glass exhibited higher PL intensity and QY than commercial Y2O3:Eu3+ phosphor. The origin of a high QY and small concentration quenching were investigated by the structural analysis. The glass structure was investigated using 19F- and 11B-magic-angle spinning nuclear magnetic resonance, extended X-ray absorption fine structure of Ba K-edge, and high-energy X-ray diffraction. Moreover, the glass structure was simulated by molecular dynamics. It was found that the glass had a structural similarity with BaMgBO3F crystal in the short-range order of B and Ba. The glass had a clear selectivity that B preferred to bind to O and Ba preferred to bind to F. The glass also exhibited unique medium-range ordering. Two types of BaBa displacements were observed, which could be attributed to in-plane and out-plane layered displacements of the corresponding crystal, with the stacking structure of oxidefluoride layers indicated by the radial distribution. The glass showed anion segregation, also similar to the layer-stacking structure of BaMgBO3F. This made the low phonon sites coordinated with F compatible with the asymmetric sites derived from the oxide network segregation, resulting in high PL efficiency. The study results can contribute to the use of rare-earth ion-doped glasses in various applications such as laser and optical amplification, white light emitting diode (LED) lighting, and sensing technologies.
AB - In this study, we developed a highly efficient photoluminescent glass from the design of a shortmedium range structure and the photoluminescence (PL) of a fluoroborate glass. We investigated PL and the structures of BaMgBO3F ceramics and the B2O3-added composition of glasses and glass-ceramics. The glass showed higher quantum yield (QY) than ceramic samples, i.e., the QY was 95 % for glass and 51 % for ceramics, by a 395 nm excitation. The glass can contain a large amount of emission centers with small concentration quenching, and 15 % Eu-doped glass exhibited higher PL intensity and QY than commercial Y2O3:Eu3+ phosphor. The origin of a high QY and small concentration quenching were investigated by the structural analysis. The glass structure was investigated using 19F- and 11B-magic-angle spinning nuclear magnetic resonance, extended X-ray absorption fine structure of Ba K-edge, and high-energy X-ray diffraction. Moreover, the glass structure was simulated by molecular dynamics. It was found that the glass had a structural similarity with BaMgBO3F crystal in the short-range order of B and Ba. The glass had a clear selectivity that B preferred to bind to O and Ba preferred to bind to F. The glass also exhibited unique medium-range ordering. Two types of BaBa displacements were observed, which could be attributed to in-plane and out-plane layered displacements of the corresponding crystal, with the stacking structure of oxidefluoride layers indicated by the radial distribution. The glass showed anion segregation, also similar to the layer-stacking structure of BaMgBO3F. This made the low phonon sites coordinated with F compatible with the asymmetric sites derived from the oxide network segregation, resulting in high PL efficiency. The study results can contribute to the use of rare-earth ion-doped glasses in various applications such as laser and optical amplification, white light emitting diode (LED) lighting, and sensing technologies.
KW - Glass structure
KW - Microsegregation
KW - Oxyfluorides
KW - PDF analysis
KW - Photoluminescence
UR - http://www.scopus.com/inward/record.url?scp=85097577022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097577022&partnerID=8YFLogxK
U2 - 10.2109/jcersj2.20168
DO - 10.2109/jcersj2.20168
M3 - Article
AN - SCOPUS:85097577022
SN - 1882-0743
VL - 128
SP - 1030
EP - 1037
JO - Journal of the Ceramic Society of Japan
JF - Journal of the Ceramic Society of Japan
IS - 12
ER -