TY - JOUR
T1 - Phyllanthus acidus (L.) Skeels and Rhinacanthus nasutus (L.) Kurz leaf extracts suppress melanogenesis in normal human epidermal melanocytes and reconstitutive skin culture
AU - Chatatikun, Moragot
AU - Yamauchi, Takeshi
AU - Yamasaki, Kenshi
AU - Chiabchalard, Anchalee
AU - Aiba, Setsuya
N1 - Funding Information:
First and corresponding author: Moragot Chatatikun, Department of Medical Technology, School of Allied Health Sciences, Walailak University, 80161 Thailand. Tel: +66-7567-2703-4 E-mail: moragot.ch@wu.ac.th Foundation project: This work was financially supported by by research grant from Kao Melanin Workshop (KY), by Grant-in-Aid for Challenging Exploratory Research 16K15542 (KY) and a Grant-in-aid for Scientific Research C 24591622 (KY) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by Novartis Pharma Research Grants (KY), and by grants from the Department of Dermatology, Tohoku University Graduate School of Medicine, Japan. We thank Chanat Kumtornrut for helpful discussions about the results. Finally, we greatly appreciate Professor Dr. Duncan R. Smith (Institute of Molecular Biosciences, Mahidol University) for his reviewing of this manuscript and was grateful manuscript writing camp from School of Allied Health Sciences, Walailak University.
Funding Information:
This work was financially supported by by research grant from Kao Melanin Workshop (KY), by Grant-in-Aid for Challenging Exploratory Research 16K15542 (KY) and a Grant-in-aid for Scientific Research C 24591622 (KY) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, by Novartis Pharma Research Grants (KY), and by grants from the Department of Dermatology, Tohoku University Graduate School of Medicine, Japan. We thank Chanat Kumtornrut for helpful discussions about the results. Finally, we greatly appreciate Professor Dr. Duncan R. Smith (Institute of Molecular Biosciences, Mahidol University) for his reviewing of this manuscript and was grateful manuscript writing camp from School of Allied Health Sciences, Walailak University.
Publisher Copyright:
© 2019 Asian Pacific Journal of Tropical Medicine Produced by Wolters Kluwer- Medknow.
PY - 2019/3/1
Y1 - 2019/3/1
N2 - Objective: To determine the effect of extracts from Phyllanthus acidus (P. acidus) (L.) Skeels and Rhinacanthus nasutus (R. nasutus) (L.) Kurz leaves on melanogenesis and the underlying mechanism in normal human epidermal melanocytes (NHEM) and a reconstitutive skin model. Methods: NHEM and a reconstitutive skin model were stimulated with ethanol extracts of P. acidus (L.) Skeels and R. nasutus (L.) Kurz leaves. mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and dopachrome tautomerase (DCT) were examined by real-time PCR. The melanin content in NHEM was also measured. Moreover, protein levels of tyrosinase were determined using western blot analysis. Results: In NHEM and the reconstitutive skin model, ethanol extracts from P. acidus (at 12.5 and 25.0 μg/mL) and R. nasutus (at 6.25 and 12.50 μg/mL) significantly diminished mRNA expression of MITF, TYR, TYRP1 and DCT in a concentration-dependent manner. P. acidus and R. nasutus extracts also reduced the amount of melanin in α-MSH-stimulated NHEM. Moreover, P. acidus and R. nasutus extracts markedly suppressed tyrosinase at the translational level in the reconstitutive skin model. Conclusions: P. acidus and R. nasutus extracts significantly reduced melanogenesis in NHEM and the reconstitutive skin model, suggesting that P. acidus and R. nasutus extracts can inhibit melanin synthesis through downregulation of MITF, TYR, TYRP1 and DCT. Therefore, the ethanol extracts of P. acidus and R. nasutus contain compounds that have the potential for development as a skin lightening agent for the treatment of hyperpigmentation disorder or melasma.
AB - Objective: To determine the effect of extracts from Phyllanthus acidus (P. acidus) (L.) Skeels and Rhinacanthus nasutus (R. nasutus) (L.) Kurz leaves on melanogenesis and the underlying mechanism in normal human epidermal melanocytes (NHEM) and a reconstitutive skin model. Methods: NHEM and a reconstitutive skin model were stimulated with ethanol extracts of P. acidus (L.) Skeels and R. nasutus (L.) Kurz leaves. mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and dopachrome tautomerase (DCT) were examined by real-time PCR. The melanin content in NHEM was also measured. Moreover, protein levels of tyrosinase were determined using western blot analysis. Results: In NHEM and the reconstitutive skin model, ethanol extracts from P. acidus (at 12.5 and 25.0 μg/mL) and R. nasutus (at 6.25 and 12.50 μg/mL) significantly diminished mRNA expression of MITF, TYR, TYRP1 and DCT in a concentration-dependent manner. P. acidus and R. nasutus extracts also reduced the amount of melanin in α-MSH-stimulated NHEM. Moreover, P. acidus and R. nasutus extracts markedly suppressed tyrosinase at the translational level in the reconstitutive skin model. Conclusions: P. acidus and R. nasutus extracts significantly reduced melanogenesis in NHEM and the reconstitutive skin model, suggesting that P. acidus and R. nasutus extracts can inhibit melanin synthesis through downregulation of MITF, TYR, TYRP1 and DCT. Therefore, the ethanol extracts of P. acidus and R. nasutus contain compounds that have the potential for development as a skin lightening agent for the treatment of hyperpigmentation disorder or melasma.
KW - MITF
KW - Melanin
KW - Phyllanthus acidus (L.) Skeels
KW - Rhinacanthus nasutus (L.) Kurz
KW - Tyrosinase
UR - http://www.scopus.com/inward/record.url?scp=85063612649&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063612649&partnerID=8YFLogxK
U2 - 10.4103/1995-7645.254935
DO - 10.4103/1995-7645.254935
M3 - Article
AN - SCOPUS:85063612649
SN - 1995-7645
VL - 12
SP - 98
EP - 105
JO - Asian Pacific Journal of Tropical Medicine
JF - Asian Pacific Journal of Tropical Medicine
IS - 3
ER -