Picosecond anti-Stokes Raman excitation profiles as a method for investigating vibrationally excited transients

Hiromi Okamoto, Takakazu Nakabayashi, Mitsuo Tasumi

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

A method for estimating vibrational quantum numbers of vibrationally excited transients in solution is proposed. In this method, we calculate anti-Stokes Raman excitation profiles (REPs) which are characteristic of the initial vibrational states involved in the Raman process, and compare them with observed anti-Stokes intensities. We have applied this method to vibrationally hot molecules of canthaxanthin in the S0 state and those of trans-stilbene in the S1 state. For canthaxanthin, it has been found that the vibrationally excited transients are for the most part on the v = 1 level of the C = C stretching mode, and that excess vibrational energy is statistically distributed among all intramolecular vibrational modes. As for S1 stilbene, vibrational transients are shown to be mostly on the v = 1 level for two vibrational modes examined, while the excess vibrational energy is probably localised on the olefinic C = C stretching mode.

Original languageEnglish
Pages (from-to)335-341
Number of pages7
JournalLaser Chemistry
Volume19
Issue number1-4
DOIs
Publication statusPublished - 1999

Keywords

  • Anti-Stokes Raman scattering
  • Intramolecular vibrational redistribution
  • Resonance Raman excitation profiles
  • Time-resolved Raman spectroscopy
  • Vibrational relaxation

Fingerprint

Dive into the research topics of 'Picosecond anti-Stokes Raman excitation profiles as a method for investigating vibrationally excited transients'. Together they form a unique fingerprint.

Cite this