TY - JOUR
T1 - Plate-tectonic evolution of the earth
T2 - Bottom-up and top-down mantle circulation
AU - Ernst, W. G.
AU - Sleep, Norman H.
AU - Tsujimori, Tatsuki
N1 - Funding Information:
This synthesis is dedicated to Kevin Burke and John Dewey, two of the most insightful, articulate leaders of the plate-tectonic revolution. Their seminal applications of global tectonics to the home planet have lighted the way for us all. Our paper is based on the accomplishments of many Earth scientists. This synthesis was support by Stanford University and by Tohoku University in part by grants from the MEXT/JSPS KAKENHI (24403010, 15H05212) awarded to T.T. Steve Shirey and Mark Harrison provided critical feedback on the draft manuscript. Editor Ali Polat, reviewer Shige Maruyama, and an anonymous reviewer gave helpful criticism during the journal review. The authors thank these researchers and institutions for their advice and help
Publisher Copyright:
© 2016, Canadian Science Publishing. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Intense devolatilization and chemical-density differentiation attended accretion of planetesimals on the primordial Earth. These processes gradually abated after cooling and solidification of an early magma ocean. By 4.3 or 4.2 Ga, water oceans were present, so surface temperatures had fallen far below low-pressure solidi of dry peridotite, basalt, and granite, ~1300, ~1120, and ~950 °C, respectively. At less than half their T solidi, rocky materials existed as thin lithospheric slabs in the near-surface Hadean Earth. Stagnant-lid convection may have occurred initially but was at least episodically overwhelmed by subduction because effective, massive heat transfer necessitated vigorous mantle overturn in the early, hot planet. Bottom-up mantle convection, including voluminous plume ascent, efficiently rid the Earth of deep-seated heat. It declined over time as cooling and top-down lithospheric sinking increased. Thickening and both lateral extensional + contractional deformation typified the post-Hadean lithosphere. Stages of geologic evolution included (i) 4.5–4.4 Ga, magma ocean overturn involved ephemeral, surficial rocky platelets; (ii) 4.4–2.7 Ga, formation of oceanic and small continental plates were obliterated by return mantle flow prior to ~4.0 Ga; continental material gradually accumulated as largely sub-sea, sialic crust-capped lithospheric collages; (iii) 2.7–1.0 Ga, progressive suturing of old shields + younger orogenic belts led to cratonal plates typified by emerging continental freeboard, increasing sedimentary differentiation, and episodic glaciation during transpolar drift; onset of temporally limited stagnant-lid mantle convection occurred beneath enlarging supercontinents; (iv) 1.0 Ga–present, laminar-flowing asthenospheric cells are now capped by giant, stately moving plates. Near-restriction of komatiitic lavas to the Archean, and appearance of multicycle sediments, ophiolite complexes} alkaline igneous rocks, and high-pressure–ultrahigh-pressure (HP–UHP) metamorphic belts in progressively younger Proterozoic and Phanerozoic orogens reflect increasing negative buoyancy of cool oceanic lithosphere, but decreasing subductability of enlarging, more buoyant continental plates. Attending supercontinental assembly, density instabilities of thickening oceanic plates began to control overturn of suboceanic mantle as cold, top-down convection. Over time, the scales and dynamics of hot asthenospheric upwelling versus lithospheric foundering + mantle return flow (bottom-up plume-driven ascent versus top-down plate subduction) evolved gradually, reflecting planetary cooling. These evolving plate-tectonic processes have accompanied the Earth’s thermal history since ~4.4 Ga.
AB - Intense devolatilization and chemical-density differentiation attended accretion of planetesimals on the primordial Earth. These processes gradually abated after cooling and solidification of an early magma ocean. By 4.3 or 4.2 Ga, water oceans were present, so surface temperatures had fallen far below low-pressure solidi of dry peridotite, basalt, and granite, ~1300, ~1120, and ~950 °C, respectively. At less than half their T solidi, rocky materials existed as thin lithospheric slabs in the near-surface Hadean Earth. Stagnant-lid convection may have occurred initially but was at least episodically overwhelmed by subduction because effective, massive heat transfer necessitated vigorous mantle overturn in the early, hot planet. Bottom-up mantle convection, including voluminous plume ascent, efficiently rid the Earth of deep-seated heat. It declined over time as cooling and top-down lithospheric sinking increased. Thickening and both lateral extensional + contractional deformation typified the post-Hadean lithosphere. Stages of geologic evolution included (i) 4.5–4.4 Ga, magma ocean overturn involved ephemeral, surficial rocky platelets; (ii) 4.4–2.7 Ga, formation of oceanic and small continental plates were obliterated by return mantle flow prior to ~4.0 Ga; continental material gradually accumulated as largely sub-sea, sialic crust-capped lithospheric collages; (iii) 2.7–1.0 Ga, progressive suturing of old shields + younger orogenic belts led to cratonal plates typified by emerging continental freeboard, increasing sedimentary differentiation, and episodic glaciation during transpolar drift; onset of temporally limited stagnant-lid mantle convection occurred beneath enlarging supercontinents; (iv) 1.0 Ga–present, laminar-flowing asthenospheric cells are now capped by giant, stately moving plates. Near-restriction of komatiitic lavas to the Archean, and appearance of multicycle sediments, ophiolite complexes} alkaline igneous rocks, and high-pressure–ultrahigh-pressure (HP–UHP) metamorphic belts in progressively younger Proterozoic and Phanerozoic orogens reflect increasing negative buoyancy of cool oceanic lithosphere, but decreasing subductability of enlarging, more buoyant continental plates. Attending supercontinental assembly, density instabilities of thickening oceanic plates began to control overturn of suboceanic mantle as cold, top-down convection. Over time, the scales and dynamics of hot asthenospheric upwelling versus lithospheric foundering + mantle return flow (bottom-up plume-driven ascent versus top-down plate subduction) evolved gradually, reflecting planetary cooling. These evolving plate-tectonic processes have accompanied the Earth’s thermal history since ~4.4 Ga.
UR - http://www.scopus.com/inward/record.url?scp=84994824009&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84994824009&partnerID=8YFLogxK
U2 - 10.1139/cjes-2015-0126
DO - 10.1139/cjes-2015-0126
M3 - Article
AN - SCOPUS:84994824009
SN - 0008-4077
VL - 53
SP - 1103
EP - 1120
JO - Canadian Journal of Earth Sciences
JF - Canadian Journal of Earth Sciences
IS - 11
ER -