Polymorphism of the S-locus glycoprotein gene (SLG) and the S-locus related gene (SLR1) in Raphanus sativus L. and self-incompatible ornamental plants in the Brassicaceae

K. Sakamoto, M. Kusaba, T. Nishio

    Research output: Contribution to journalArticlepeer-review

    50 Citations (Scopus)

    Abstract

    The S-locus glycoprotein gene, SLG, which participates in the pollen-stigma interaction of self-incompatibility, and its unlinked homologue, SLR1, were analyzed in Raphanus sativus and three self-incompatible ornamental plants in the Brassicaceae. Among twenty-nine inbred lines of R. sativus, eighteen S haplotypes were identified on the basis of DNA polymorphisms detected by genomic Southern analysis using Brassica SLG probes. DNA fragments of SLG alleles specifically amplified from eight S haplotypes by PCR with class I SLG-specific primers showed different profiles following polyacrylamide gel electrophoresis, after digestion with a restriction endonuclease. The nucleotide sequences of the DNA fragments of these eight R. sativus SLG alleles were determined. Degrees of similarity of the nucleotide sequences to a Brassica SLG (S6SLG) ranged from 85.6% to 91.9%. Amino acid sequences deduced from these had the twelve conserved cysteine residues and the three hypervariable regions characteristic of Brassica SLGs. Phylogenetic analysis of the SLG sequences from Raphanus and Brassica revealed that the Raphanus SLGs did not form an independent cluster, but were dispersed in the tree, clustering together with Blassica SLGs. These results suggest that diversification of the SLG alleles of Raphanus and Brassica occurred before differentiation of these genera. Although SLR1 sequences from Orychophragmus violaceus were shown to be relatively closely related to Brassica and Raphanus SLR1 sequences, DNA fragments that are highly homologous to the Brassica SLG were not detected in this species. Two other ornamental plants in the Brassicaceae, which are related more distantly to Brassica than Orychophragmus, also lacked sequences highly homologous to Brassica SLG genes. The evolution of self-incompatibility in the Brassicaceae is discussed.

    Original languageEnglish
    Pages (from-to)397-403
    Number of pages7
    JournalMolecular and General Genetics
    Volume258
    Issue number4
    DOIs
    Publication statusPublished - 1998

    Keywords

    • Cheiranthus cheiri
    • Evolution
    • Iberis amara
    • Orychophragmus violaceus
    • Stigma glycoprotein

    ASJC Scopus subject areas

    • Genetics

    Fingerprint

    Dive into the research topics of 'Polymorphism of the S-locus glycoprotein gene (SLG) and the S-locus related gene (SLR1) in Raphanus sativus L. and self-incompatible ornamental plants in the Brassicaceae'. Together they form a unique fingerprint.

    Cite this