Abstract
In this paper, we present a new approach for a flexible magnetic actuator (FMA) using Sm-Fe-N magnetic silicone rubber (MSR) that has a higher degree of freedom (DOF) in shape, flexibility, ease of fabrication and combinative ability than permanent magnets. To verify its potential for use in an FMA, we examined its magnetic and elastic properties and focused on magnetic torque control within a uniform rotating magnetic field. Silicone rubber liquid and hardener were mixed with Sm-Fe-N powder and poured into a mold. The fabricated Sm-Fe-N MSR included Sm-Fe-N powder of 13.5, 17.3, and 21.2 vol% ratio. The physical and elastic properties were determined by a vibrating sample magnetometer (VSM) and elastic load, respectively. Furthermore, we fabricated two FMAs (multiple-magnetic anisotropy type and spiral-type), and evaluated the suitability of the Sm-Fe-N MSR for magnetic wireless actuators based on magnetic torque control.
Original language | English |
---|---|
Article number | 067001 |
Journal | Smart Materials and Structures |
Volume | 23 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2014 Jun |
Keywords
- Sm-Fe-N magnetic silicone rubber
- flexible magnetic actuator
- magnetic robot accplications
- magnetic wireless control
ASJC Scopus subject areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering