Preparation, Characterization, and Modeling of Ultrahigh Coercivity Sm–Co Thin Films

O. Akdogan, H. Sepehri-Amin, N. M. Dempsey, T. Ohkubo, K. Hono, O. Gutfleisch, T. Schrefl, D. Givord

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Isotropic Sm–Co thin films with different SmxCoy phases (1:7, 1:5, and 2:7) are prepared by triode sputtering of targets of variable composition. A room-temperature coercivity value of 6.8 T is achieved in the film with the SmCo5 phase. Transmission electron microscopy (TEM) and 3D atom probe analyses of films that comprise this compound reveal the presence of Sm-rich 4-nm-sized precipitates within grains and along grain boundaries. Atomic-resolution scanning transmission electron microscopy/high-resolution high-angle annular dark-field (STEM/HAADF) imaging show that stacking faults occur within SmCo5 grains, which correspond to local phase variants including Sm2Co7, Sm5Co19 and SmCo3. The contribution to domain wall pinning of precipitates and stacking faults, as well as grain boundaries between misaligned grains, is discussed semi-quantitatively. Micromagnetic simulations are carried out to evaluate the influence of stacking faults and grain boundaries on magnetization reversal. The results indicate that the high coercivity values achieved can mainly be attributed to the strong pinning of magnetic domains at the grain boundaries of randomly oriented SmCo5 nanograins.

Original languageEnglish
Article number1500009
JournalAdvanced Electronic Materials
Volume1
Issue number5
DOIs
Publication statusPublished - 2015 May 1
Externally publishedYes

Keywords

  • Sm-Co
  • high coercivity
  • modeling
  • thin films

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Preparation, Characterization, and Modeling of Ultrahigh Coercivity Sm–Co Thin Films'. Together they form a unique fingerprint.

Cite this