TY - JOUR
T1 - Preparation of chylomicrons and VLDL with monoacid-rich triacylglycerol and characterization of kinetic parameters in lipoprotein lipase-mediated hydrolysis in chickens
AU - Sato, Kan
AU - Takahashi, Toshihiro
AU - Takahashi, Yuji
AU - Shiono, Hiroki
AU - Katoh, Norio
AU - Akiba, Yukio
PY - 1999
Y1 - 1999
N2 - To identify the substrate specificity of lipoprotein lipase (LPL) for triacylglycerol-rich lipoproteins with monoacid-rich triacylglycerols, monoacid-rich lipoproteins were prepared and kinetic parameters of LPL were characterized. Male broiler chickens were fed 8 g/100 g fat diets differing only in the fat source: palm oil (tripalmitin-rich), olive oil (triolein- rich), safflower oil (trilinolein-rich) and linseed oil (trilinolenin-rich). After diets were fed for 3 d, chickens were starved for 2 d and then force- fed emulsions containing one of the monoacidtriacylglycerols: tripalmitin, triolein, trilinolein or trilinolenin. The triacylglycerols in chylomicrons and very low density lipoprotein (VLDL) of chickens force-fed tripalmitin, triolein or trilinolein contained the corresponding acid at more than 70% of total acids. Linolenic acid was incorporated into chylomicrons and VLDL to a lower extent (51.2 and 57.2%, respectively) in chickens force-fed trilinolein. Major apolipoproteins and lipid compositions were not significantly different among all lipoproteins isolated from chickens fed the different fats. Vmax of LPL was significantly higher (P < 0.05) for palmitic acid-rich chylomicrons and VLDL and decreased with increasing chain length and unsaturation of monoacid: 16:0>18:1>18:2>18:3. The electron spin resonance analysis, order parameter (S), decreased with monoacid chain length and unsaturation. In addition, the Vmax of LPL increased linearly (P < 0.01, r = 0.912) with an increase in the palmitic acid content of the lipoprotein triacylglycerols. These findings suggest that lipoprotein catalysis by LPL is modulated by the palmitic acid content of the lipoprotein triacylglycerol, which affects the fluidity of lipoproteins.
AB - To identify the substrate specificity of lipoprotein lipase (LPL) for triacylglycerol-rich lipoproteins with monoacid-rich triacylglycerols, monoacid-rich lipoproteins were prepared and kinetic parameters of LPL were characterized. Male broiler chickens were fed 8 g/100 g fat diets differing only in the fat source: palm oil (tripalmitin-rich), olive oil (triolein- rich), safflower oil (trilinolein-rich) and linseed oil (trilinolenin-rich). After diets were fed for 3 d, chickens were starved for 2 d and then force- fed emulsions containing one of the monoacidtriacylglycerols: tripalmitin, triolein, trilinolein or trilinolenin. The triacylglycerols in chylomicrons and very low density lipoprotein (VLDL) of chickens force-fed tripalmitin, triolein or trilinolein contained the corresponding acid at more than 70% of total acids. Linolenic acid was incorporated into chylomicrons and VLDL to a lower extent (51.2 and 57.2%, respectively) in chickens force-fed trilinolein. Major apolipoproteins and lipid compositions were not significantly different among all lipoproteins isolated from chickens fed the different fats. Vmax of LPL was significantly higher (P < 0.05) for palmitic acid-rich chylomicrons and VLDL and decreased with increasing chain length and unsaturation of monoacid: 16:0>18:1>18:2>18:3. The electron spin resonance analysis, order parameter (S), decreased with monoacid chain length and unsaturation. In addition, the Vmax of LPL increased linearly (P < 0.01, r = 0.912) with an increase in the palmitic acid content of the lipoprotein triacylglycerols. These findings suggest that lipoprotein catalysis by LPL is modulated by the palmitic acid content of the lipoprotein triacylglycerol, which affects the fluidity of lipoproteins.
KW - Chickens
KW - Electron spin resonance analysis
KW - Fatty acid
KW - Lipoprotein lipase
KW - Triacylglycerol-rich lipoprotein
UR - http://www.scopus.com/inward/record.url?scp=0032921815&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032921815&partnerID=8YFLogxK
U2 - 10.1093/jn/129.1.126
DO - 10.1093/jn/129.1.126
M3 - Article
C2 - 9915888
AN - SCOPUS:0032921815
SN - 0022-3166
VL - 129
SP - 126
EP - 131
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 1
ER -