TY - JOUR
T1 - Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1
AU - Fukushima, Yoshimasa
AU - Okajima, Koji
AU - Shibata, Yutaka
AU - Ikeuchi, Masahiko
AU - Itoh, Shigeru
PY - 2005/4/5
Y1 - 2005/4/5
N2 - Proteins with a BLUF (sensor of blue light using flavin adenine dinucleotide) domain represent a newly recognized class of photoreceptors that is widely distributed in the genomes of photosynthetic bacteria, cyanobacteria, and Euglena. Recently, Okajima et al. [Okajima, K., Yoshihara, S., Geng, X., Katayama, M. and Ikeuchi, M. (2003) Plant Cell Physiol. 44 (Suppl), 162] purified BLUF protein Tll0078 encoded in the genome of thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by expressing the protein in Escherichia coli. We investigated the photocycle of Tll0078 by measuring the picosecond fluorescence kinetics, transient absorption changes, and the UV-visible absorption spectra at 10 to 330 K. The absorption spectrum of the FAD moiety of Tll0078 showed a 10-nm red shift upon illumination at 278-330 K. The quantum efficiency of the formation of the red-shifted form was 29%. Illumination at 10 K, on the other hand, caused only a 5-nm red shift in about one-half of the protein population. The 5-nm-shifted form was stable at 10 K. The 5-nm red-shifted form was converted into the 10-nm red-shifted form at 50-240 K upon warming in the dark. At room temperature, the 10-nm red-shifted final product appeared within 10 ns after laser flash excitation. The lifetime of the fluorescence of FAD was found to be 120 ps at room temperature. These results reveal a fast and efficient photoconversion process from the singlet-excited state to the final product at room temperature. A photocycle of BLUF protein is proposed that includes the 5-nm red-shifted intermediate form as the precursor for the 10-nm red-shifted final product. The temperature dependence of each step of the photocycle is also discussed.
AB - Proteins with a BLUF (sensor of blue light using flavin adenine dinucleotide) domain represent a newly recognized class of photoreceptors that is widely distributed in the genomes of photosynthetic bacteria, cyanobacteria, and Euglena. Recently, Okajima et al. [Okajima, K., Yoshihara, S., Geng, X., Katayama, M. and Ikeuchi, M. (2003) Plant Cell Physiol. 44 (Suppl), 162] purified BLUF protein Tll0078 encoded in the genome of thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 by expressing the protein in Escherichia coli. We investigated the photocycle of Tll0078 by measuring the picosecond fluorescence kinetics, transient absorption changes, and the UV-visible absorption spectra at 10 to 330 K. The absorption spectrum of the FAD moiety of Tll0078 showed a 10-nm red shift upon illumination at 278-330 K. The quantum efficiency of the formation of the red-shifted form was 29%. Illumination at 10 K, on the other hand, caused only a 5-nm red shift in about one-half of the protein population. The 5-nm-shifted form was stable at 10 K. The 5-nm red-shifted form was converted into the 10-nm red-shifted form at 50-240 K upon warming in the dark. At room temperature, the 10-nm red-shifted final product appeared within 10 ns after laser flash excitation. The lifetime of the fluorescence of FAD was found to be 120 ps at room temperature. These results reveal a fast and efficient photoconversion process from the singlet-excited state to the final product at room temperature. A photocycle of BLUF protein is proposed that includes the 5-nm red-shifted intermediate form as the precursor for the 10-nm red-shifted final product. The temperature dependence of each step of the photocycle is also discussed.
UR - http://www.scopus.com/inward/record.url?scp=16344389152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16344389152&partnerID=8YFLogxK
U2 - 10.1021/bi048044y
DO - 10.1021/bi048044y
M3 - Article
C2 - 15794652
AN - SCOPUS:16344389152
SN - 0006-2960
VL - 44
SP - 5149
EP - 5158
JO - Biochemistry
JF - Biochemistry
IS - 13
ER -