Prognostic model for patients with advanced cancer using a combination of routine blood test values

Taeko Miyagi, Satoshi Miyata, Keita Tagami, Yusuke Hiratsuka, Mamiko Sato, Ikuo Takeda, Katsura Kohata, Noriaki Satake, Hiroaki Shimokawa, Akira Inoue

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Purpose: The purpose of this study was to develop a simple prognostic model based on objective indicators alone, i.e., routine blood test data, without using any subjective variables such as patient’s symptoms and physician’s prediction. Methods: The subjects of this retrospective study were patients at the palliative care unit of Tohoku University Hospital, Japan. Eligible patients were over 20 years old and had advanced cancer (n = 225). The model for predicting survival was developed based on Cox proportional hazards regression models for univariable and multivariable analyses of 20 items selected from routine blood test data. All the analyses were performed according to the TRIPOD statement ( Results: The univariable and multivariable regression analyses identified total bilirubin, creatinine, urea/creatinine ratio, aspartate aminotransferase, albumin, total leukocyte count, differential lymphocyte count, and platelet/lymphocyte ratio as significant risk factors for mortality. Based on the hazard ratios, the area under the curve for the new risk model was 0.87 for accuracy, 0.83 for sensitivity, and 0.74 for specificity. Diagnostic accuracy was higher than provided by the Palliative Prognostic Score and the Palliative Prognostic Index. The Kaplan–Meier analysis demonstrated a survival significance of classifying patients according to their score into low-, medium-, and high-mortality risk groups having median survival times of 67 days, 34 days, and 11 days, respectively (p < 0.001). Conclusions: We developed a simple and accurate prognostic model for predicting the survival of patients with advanced cancer based on routine blood test values alone that may be useful for appropriate advanced care planning in a palliative care setting.

Original languageEnglish
Pages (from-to)4431-4437
Number of pages7
JournalSupportive Care in Cancer
Issue number8
Publication statusPublished - 2021 Aug


  • Advanced cancer
  • Blood tests
  • Cox regression analysis
  • Palliative care
  • Prognostic model


Dive into the research topics of 'Prognostic model for patients with advanced cancer using a combination of routine blood test values'. Together they form a unique fingerprint.

Cite this