Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Perpendicular-anisotropy magnetic tunnel junctions (MTJs) were prepared on four substrate geometries, i.e., directly on the axis of the bottom electrode contact, directly off the axis of the bottom electrode contact, on the axis of the bottom electrode contact with a polished bottom electrode, and off the axis of the bottom electrode contact with a polished bottom electrode. Electrical shorts were observed for direct on-axis geometry at a certain extent, whereas there were no electrical shorts for the other three geometries. The MR ratio/δR, JC0, and thermal stability factor of the devices for polish on-axis geometry were almost the same as those for polish off-axis geometry. From TEM observations of the polish on-axis device, the interface between the bottom contact and the base electrode was determined to be rough, whereas the MgO barrier layer was determined to be smooth, indicating that the polish process was effective for smooth magnetic tunnel junction fabrication over the bottom contact. MTJs for polish on-axis geometry eliminated the base electrode resistance and increased the magnetoresistance ratio. This technology contributes to the higher density of spin transfer torque magnetic random access memory.

Original languageEnglish
Article number04DM06
JournalJapanese journal of applied physics
Volume54
Issue number4
DOIs
Publication statusPublished - 2015 Apr 1

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact'. Together they form a unique fingerprint.

Cite this