Pulsed-laser deposition of InSe thin films for the detection of thickness-dependent bandgap modification

Dingheng Zheng, Junichi Shiogai, Kohei Fujiwara, Atsushi Tsukazaki

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Layer-structured InSe is one of the intensively studied two-dimensional monochalcogenide semiconductors for optical and electrical devices. Significant features of the InSe device are the thickness dependent bandgap modification resulting in a peak shift of photoluminescence and a drastic variation of electron mobility. In this study, by applying the pulsed-laser deposition technique, we investigated the optical and electrical properties of c-axis oriented InSe films with the thickness varying from a few to hundred nanometers. The energy at the absorption edge systematically shifts from about 3.3 to 1.4 eV with the increasing thickness. The InSe films on Al 2 O 3 (0001) are highly resistive, while those on InP(111) are conductive, which probably originates from the valence mismatch effect at the interface. The electron mobility of the conducting charge carrier at the interface of InSe/InP is enhanced in thicker samples than the critical thickness of about 10 nm, corresponding to the bandgap modification characterized by the optical measurement. Therefore, the substrate and the film thickness are critically important factors for the materialization of InSe optical and electrical device applications.

Original languageEnglish
Article number253501
JournalApplied Physics Letters
Volume113
Issue number25
DOIs
Publication statusPublished - 2018 Dec 17

Fingerprint

Dive into the research topics of 'Pulsed-laser deposition of InSe thin films for the detection of thickness-dependent bandgap modification'. Together they form a unique fingerprint.

Cite this