Quantum chemical molecular dynamics study of oxidation process on Fe-Cr alloy surfaces in high temperature water

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Stress corrosion cracking has become the critical issue that dominates the lifetime of various metallic materials such as stainless steels used under harsh operating conditions. In the EAC process, chemical reaction of the metal surface at crack tip such as oxidation and/or anodic dissolution, and subsequent formation of an oxide film plays an important role for crack propagation. In this study, tight-binding quantum chemical molecular dynamics simulations were employed to understand the chemical reactions caused by water molecules on Fe-Cr alloy surfaces in nano-scale. The main targeted temperature was boiling water nuclear reactor (BWR) condition which is 561 K. Water molecules were dissociated on the Fe-Cr surfaces at 561 K. The chromium atoms at the top layer segregated from the surface to bond with the dissociated oxygen atoms. Oxygen concentration around the chromium atoms gradually increased to preferentially form Cr-O bonds during the simulation, which resulted in clustering of oxygen and chromium atoms on the surface. The clustering of oxygen and chromium is thought to bring about Cr-based oxide nucleation and therefore, the preferential formation of Cr-O bonds is considered to be the initial process of the formation of oxide films on the Fe-Cr surface.

Original languageEnglish
Title of host publicationNanotechnology 2012
Subtitle of host publicationElectronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012
Pages641-644
Number of pages4
Publication statusPublished - 2012
EventNanotechnology 2012: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012 - Santa Clara, CA, United States
Duration: 2012 Jun 182012 Jun 21

Publication series

NameTechnical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012

Conference

ConferenceNanotechnology 2012: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational - 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012
Country/TerritoryUnited States
CitySanta Clara, CA
Period12/6/1812/6/21

Keywords

  • Oxidation
  • Quantum chemical molecular dynamics
  • Stainless steel
  • Stress corrosion cracking

Fingerprint

Dive into the research topics of 'Quantum chemical molecular dynamics study of oxidation process on Fe-Cr alloy surfaces in high temperature water'. Together they form a unique fingerprint.

Cite this