TY - JOUR
T1 - Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis
T2 - Application to the 2011 Tohoku-Oki earthquake (M w 9.0)
AU - Ohta, Yusaku
AU - Kobayashi, Tatsuya
AU - Tsushima, Hiroaki
AU - Miura, Satoshi
AU - Hino, Ryota
AU - Takasu, Tomoji
AU - Fujimoto, Hiromi
AU - Iinuma, Takeshi
AU - Tachibana, Kenji
AU - Demachi, Tomotsugu
AU - Sato, Toshiya
AU - Ohzono, Mako
AU - Umino, Norihito
PY - 2012/2/1
Y1 - 2012/2/1
N2 - Real-time crustal deformation monitoring is extremely important for achieving rapid understanding of actual earthquake scales, because the measured permanent displacement directly gives the true earthquake size (seismic moment, Mw) information, which in turn, provides tsunami forecasting. We have developed an algorithm to detect/estimate static ground displacements due to earthquake faulting from real-time kinematic GPS (RTK-GPS) time series. The new algorithm identifies permanent displacements by monitoring the difference of a short-term average (STA) to a long-term average (LTA) of the GPS time series. We assessed the noise property and precision of the RTK-GPS time series with various baseline length conditions and orbits and discerned that the real-time ephemerides based on the International GNSS Service (IGS) are sufficient for crustal deformation monitoring with long baselines up to ∼1,000 km. We applied the algorithm to data obtained in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) to test the possibility of coseismic displacement detections, and further, we inverted the obtained displacement fields for a fault model; the inversion estimated a fault model with M w 8.7, which is close to the actual Mw of 9.0, within five minutes from the origin time. Once the fault model is estimated, tsunami waveforms can be immediately synthesized using pre-computed tsunami Green's functions. The calculated waveforms showed good agreement with the actual tsunami observations both in arrival times and wave heights, suggesting that the RTK-GPS data by our algorithm can provide reliable rapid tsunami forecasting that can complement existing tsunami forecasting systems based on seismic observations.
AB - Real-time crustal deformation monitoring is extremely important for achieving rapid understanding of actual earthquake scales, because the measured permanent displacement directly gives the true earthquake size (seismic moment, Mw) information, which in turn, provides tsunami forecasting. We have developed an algorithm to detect/estimate static ground displacements due to earthquake faulting from real-time kinematic GPS (RTK-GPS) time series. The new algorithm identifies permanent displacements by monitoring the difference of a short-term average (STA) to a long-term average (LTA) of the GPS time series. We assessed the noise property and precision of the RTK-GPS time series with various baseline length conditions and orbits and discerned that the real-time ephemerides based on the International GNSS Service (IGS) are sufficient for crustal deformation monitoring with long baselines up to ∼1,000 km. We applied the algorithm to data obtained in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) to test the possibility of coseismic displacement detections, and further, we inverted the obtained displacement fields for a fault model; the inversion estimated a fault model with M w 8.7, which is close to the actual Mw of 9.0, within five minutes from the origin time. Once the fault model is estimated, tsunami waveforms can be immediately synthesized using pre-computed tsunami Green's functions. The calculated waveforms showed good agreement with the actual tsunami observations both in arrival times and wave heights, suggesting that the RTK-GPS data by our algorithm can provide reliable rapid tsunami forecasting that can complement existing tsunami forecasting systems based on seismic observations.
UR - http://www.scopus.com/inward/record.url?scp=84863116503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863116503&partnerID=8YFLogxK
U2 - 10.1029/2011JB008750
DO - 10.1029/2011JB008750
M3 - Article
AN - SCOPUS:84863116503
SN - 2169-9313
VL - 117
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 2
M1 - B02311
ER -