TY - GEN
T1 - Question-Answering with logic specific to video games
AU - Dumont, Corentin
AU - Den, Zen
AU - Inui, Kentaro
PY - 2016
Y1 - 2016
N2 - We present a corpus and a knowledge database aiming at developing Question-Answering in a new context, the open world of a video game. We chose a popular game called 'Minecraft', and created a QA corpus with a knowledge database related to this game and the ontology of a meaning representation that will be used to structure this database. We are interested in the logic rules specific to the game, which may not exist in the real world. The ultimate goal of this research is to build a QA system that can answer natural language questions from players by using inference on these game-specific logic rules. The QA corpus is partially composed of online quiz questions and partially composed of manually written variations of the most relevant ones. The knowledge database is extracted from several wiki-like websites about Minecraft. It is composed of unstructured data, such as text, that will be structured using the meaning representation we defined, and already structured data such as infoboxes. A preliminary examination of the data shows that players are asking creative questions about the game, and that the QA corpus can be used for clustering verbs and linking them to predefined actions in the game.
AB - We present a corpus and a knowledge database aiming at developing Question-Answering in a new context, the open world of a video game. We chose a popular game called 'Minecraft', and created a QA corpus with a knowledge database related to this game and the ontology of a meaning representation that will be used to structure this database. We are interested in the logic rules specific to the game, which may not exist in the real world. The ultimate goal of this research is to build a QA system that can answer natural language questions from players by using inference on these game-specific logic rules. The QA corpus is partially composed of online quiz questions and partially composed of manually written variations of the most relevant ones. The knowledge database is extracted from several wiki-like websites about Minecraft. It is composed of unstructured data, such as text, that will be structured using the meaning representation we defined, and already structured data such as infoboxes. A preliminary examination of the data shows that players are asking creative questions about the game, and that the QA corpus can be used for clustering verbs and linking them to predefined actions in the game.
KW - Knowledge acquisition
KW - Meaning representation
KW - Question-Answering
UR - http://www.scopus.com/inward/record.url?scp=85037101347&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037101347&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85037101347
T3 - Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016
SP - 4637
EP - 4643
BT - Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016
A2 - Calzolari, Nicoletta
A2 - Choukri, Khalid
A2 - Mazo, Helene
A2 - Moreno, Asuncion
A2 - Declerck, Thierry
A2 - Goggi, Sara
A2 - Grobelnik, Marko
A2 - Odijk, Jan
A2 - Piperidis, Stelios
A2 - Maegaard, Bente
A2 - Mariani, Joseph
PB - European Language Resources Association (ELRA)
T2 - 10th International Conference on Language Resources and Evaluation, LREC 2016
Y2 - 23 May 2016 through 28 May 2016
ER -