TY - JOUR
T1 - qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase
AU - Ueda, Tadamasa
AU - Sato, Tadashi
AU - Hidema, Jun
AU - Hirouchi, Tokuhisa
AU - Yamamoto, Kazuo
AU - Kumagai, Tadashi
AU - Yano, Masahiro
PY - 2005/12
Y1 - 2005/12
N2 - Rice qUVR-10, a quantitative trait locus (QTL) for ultraviolet-B (UVB) resistance on chromosome 10, was cloned by map-based strategy. It was detected in backcross inbred lines (BILs) derived from a cross between the japonica variety Nipponbare (UV resistant) and the indica variety Kasalath (UV sensitive). Plants homozygous for the Nipponbare allele at the qUVR-10 locus were more resistant to UVB compared with the Kasalath allele. High-resolution mapping using 1850 F2 plants enabled us to delimit qUVR-10 to a >27-kb genomic region. We identified a gene encoding the cyclobutane pyrimidine dimer (CPD) photolyase in this region. Activity of CPD photorepair in Nipponbare was higher than that of Kasalath and nearly isogenic with qUVR-10 [NIL(qUVR-10)], suggesting that the CPD photolyase of Kasalath was defective. We introduced a genomic fragment containing the CPD photolyase gene of Nipponbare to NIL(qUVR-10). Transgenic plants showed the same level of resistance as Nipponbare did, indicating that the qUVR-10 encoded the CPD photolyase. Comparison of the qUVR-10 sequence in the Nipponbare and Kasalath alleles revealed one probable candidate for the functional nucleotide polymorphism. It was indicated that single-base substitution in the CPD photolyase gene caused the alteration of activity of CPD photorepair and UVB resistance. Furthermore, we were able to develop a UV-hyperresistant plant by overexpression of the photolyase gene.
AB - Rice qUVR-10, a quantitative trait locus (QTL) for ultraviolet-B (UVB) resistance on chromosome 10, was cloned by map-based strategy. It was detected in backcross inbred lines (BILs) derived from a cross between the japonica variety Nipponbare (UV resistant) and the indica variety Kasalath (UV sensitive). Plants homozygous for the Nipponbare allele at the qUVR-10 locus were more resistant to UVB compared with the Kasalath allele. High-resolution mapping using 1850 F2 plants enabled us to delimit qUVR-10 to a >27-kb genomic region. We identified a gene encoding the cyclobutane pyrimidine dimer (CPD) photolyase in this region. Activity of CPD photorepair in Nipponbare was higher than that of Kasalath and nearly isogenic with qUVR-10 [NIL(qUVR-10)], suggesting that the CPD photolyase of Kasalath was defective. We introduced a genomic fragment containing the CPD photolyase gene of Nipponbare to NIL(qUVR-10). Transgenic plants showed the same level of resistance as Nipponbare did, indicating that the qUVR-10 encoded the CPD photolyase. Comparison of the qUVR-10 sequence in the Nipponbare and Kasalath alleles revealed one probable candidate for the functional nucleotide polymorphism. It was indicated that single-base substitution in the CPD photolyase gene caused the alteration of activity of CPD photorepair and UVB resistance. Furthermore, we were able to develop a UV-hyperresistant plant by overexpression of the photolyase gene.
UR - http://www.scopus.com/inward/record.url?scp=33645120219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645120219&partnerID=8YFLogxK
U2 - 10.1534/genetics.105.044735
DO - 10.1534/genetics.105.044735
M3 - Article
C2 - 15965242
AN - SCOPUS:33645120219
SN - 0016-6731
VL - 171
SP - 1941
EP - 1950
JO - Genetics
JF - Genetics
IS - 4
ER -