TY - GEN
T1 - R & D of oxide dispersion strengthening steels for high burn-up fuel claddings
AU - Kimura, A.
AU - Cho, H. S.
AU - Lee, J. S.
AU - Kasada, R.
AU - Ukai, S.
AU - Fujiwara, M.
PY - 2004
Y1 - 2004
N2 - Research and development of fuel clad materials for high burn-up operation of light water reactor and super critical water reactor (SCPWR) will be shown with focusing on the effort to overcome the requirements of material performance as the fuel clad. Oxide dispersion strengthening (ODS) steels are well known as a high temperature structural material. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening without accompanying loss of ductility. High Cr ODS steels whose chromium concentration was in the range from 15 to 19wt% showed high resistance to corrosion in supercritical pressurized water (SCPW). As for the susceptibility to hydrogen embrittlement of ODS steels, the critical hydrogen concentration required to hydrogen embrittlement is ranging 10-12 wppm that is approximately one order of magnitude higher value than that of 9Cr reduced activation ferritic (RAF) steel. In the ODS steels, the fraction of helium desorption by bubble migration mechanism was smaller than that in the RAF steel, indicating that the ODS steels are also resistant to helium He bubble-induced embrittlement. Finally, it is demonstrated that the ODS steels are very promising for the fuel clad material for high burn-up operation of water-cooling reactors.
AB - Research and development of fuel clad materials for high burn-up operation of light water reactor and super critical water reactor (SCPWR) will be shown with focusing on the effort to overcome the requirements of material performance as the fuel clad. Oxide dispersion strengthening (ODS) steels are well known as a high temperature structural material. Recent irradiation experiments indicated that the steels were quite highly resistant to neutron irradiation embrittlement, showing hardening without accompanying loss of ductility. High Cr ODS steels whose chromium concentration was in the range from 15 to 19wt% showed high resistance to corrosion in supercritical pressurized water (SCPW). As for the susceptibility to hydrogen embrittlement of ODS steels, the critical hydrogen concentration required to hydrogen embrittlement is ranging 10-12 wppm that is approximately one order of magnitude higher value than that of 9Cr reduced activation ferritic (RAF) steel. In the ODS steels, the fraction of helium desorption by bubble migration mechanism was smaller than that in the RAF steel, indicating that the ODS steels are also resistant to helium He bubble-induced embrittlement. Finally, it is demonstrated that the ODS steels are very promising for the fuel clad material for high burn-up operation of water-cooling reactors.
UR - http://www.scopus.com/inward/record.url?scp=14844360939&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=14844360939&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:14844360939
SN - 0894486802
T3 - Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants, ICAPP'04
SP - 2070
EP - 2076
BT - Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants, ICAPP'04
T2 - Proceedings of the 2004 International Congress on Advances in Nuclear Power Plants, ICAPP'04
Y2 - 13 June 2004 through 17 June 2004
ER -