Abstract
Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.
Original language | English |
---|---|
Article number | 8848 |
Journal | Nature communications |
Volume | 6 |
DOIs | |
Publication status | Published - 2015 Nov 9 |
Externally published | Yes |
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)