Random laser oscillation from an organic fluorescent dye loaded inside a porous zirconia medium

Yukari Sakurayama, Tsunenobu Onodera, Yasuyuki Araki, Takehiko Wada, Hidetoshi Oikawa

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Porous zirconia medium (PZrM) has been fabricated successfully using polystyrene microparticles (MPs) as templates. The emission spectra of rhodamine B (RhB) [optical amplifying medium] loaded inside PZrM [porous scatterers] were obtained at numerous excitation light intensities. The lasing thresholds (Ith) have been determined experimentally from the variations in the intensity of random laser oscillation peaks, which are suitably separated from the measured emission spectra. Ith is closely related to the pore sizes of PZrM and the added amount of PZrM powder, and it clearly provided the minimum against the pore size. This fact is explained reasonably by the simulation of scattering efficiency on the basis of the Mie scattering theory. Consequently, PZrM as a porous scatterer is superior to Zr MPs from the viewpoint of random laser oscillation.

Original languageEnglish
Pages (from-to)32030-32037
Number of pages8
JournalRSC Advances
Volume11
Issue number51
DOIs
Publication statusPublished - 2021 Sept 8

Fingerprint

Dive into the research topics of 'Random laser oscillation from an organic fluorescent dye loaded inside a porous zirconia medium'. Together they form a unique fingerprint.

Cite this