TY - JOUR
T1 - Rapid black hole growth under anisotropic radiation feedback
AU - Sugimura, Kazuyuki
AU - Hosokawa, Takashi
AU - Hosokawa, Takashi
AU - Hosokawa, Takashi
AU - Yajima, Hidenobu
AU - Yajima, Hidenobu
AU - Omukai, Kazuyuki
AU - Omukai, Kazuyuki
N1 - Funding Information:
The authors would like to thank Kazumi Kashiyama, Rohta Taka-hashi, Sanemichi Takahashi and Kenji Toma for fruitful discussions. The numerical simulations were performed on the Cray XC30 at CfCA of the National Astronomical Observatory of Japan, as well as on the computer cluster, DRACO, at Frontier Research Institute for Interdisciplinary Sciences of Tohoku University. This work is supported in part by MEXT/JSPS KAKENHI Grant Number 15J03873 (KS), 25800102, 15H00776 and 16H05996 (TH), 15H06022 (HY) and 25287040 (KO).
Publisher Copyright:
© 2017 The Authors.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102 105 M) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10 below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become highredshift supermassive BHs.
AB - Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102 105 M) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10 below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become highredshift supermassive BHs.
KW - Cosmology: theory
KW - Quasars: supermassive black holes
UR - http://www.scopus.com/inward/record.url?scp=85029102501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029102501&partnerID=8YFLogxK
U2 - 10.1093/mnras/stx769
DO - 10.1093/mnras/stx769
M3 - Article
AN - SCOPUS:85029102501
SN - 0035-8711
VL - 469
SP - 62
EP - 79
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -