Abstract
Equilibrium fluctuations of the protein conformation have been studied in myoglobin by a novel method of time-resolved transient hole-burning spectroscopy over a temperature range of 180-300 K and a time range of 10 ns to 10 ms. The temporal shift of the hole spectrum has been observed in a wide temperature region of 200-300 K. It has been found that the time behavior of the peak position of the hole is highly nonexponential and can be expressed by a stretched exponential function with a β value of 0.22. As compared with the results for a dye solution sample, the time scale of the fluctuation of the protein conformation is much more weakly dependent on temperature. The time scale of the observed conformational dynamics shows a temperature dependence similar to that associated with the ligand escape process of myoglobin.
Original language | English |
---|---|
Pages (from-to) | 521-527 |
Number of pages | 7 |
Journal | Biophysical Journal |
Volume | 75 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1998 Jul |