Recent results in JT-60 experiments

M. Nagami, I. Aoki, N. Akaoka, H. Akasaka, M. Akiba, N. Akino, T. Ando, K. Annou, T. Aoyagi, T. Arai, K. Arakawa, M. Araki, M. Azumi, S. Chiba, M. Dairaku, N. Ebisawa, T. Fujii, T. Fukuda, A. Funahashi, H. FurukawaH. Gunji, K. Hamamatsu, M. Hanada, M. Hara, K. Haraguchi, H. Hiratsuka, T. Hirayama, S. Hiroki, K. Hiruta, M. Honda, M. Honda, H. Horiike, R. Hosada, N. Hosogane, K. Iida, Y. Iida, T. Iijima, K. Ikeda, Y. Ikeda, T. Imai, T. Inoue, N. Isaji, M. Isaka, S. Ishida, K. Itami, N. Itige, T. Ito, T. Kakizaki, Y. Kamada, A. Kaminaga, T. Kaneko, T. Kato, M. Kawai, M. Kawabe, Y. Kawamata, Y. Kawano, K. Kawasaki, K. Kikuchi, M. Kikuchi, H. Kimura, T. Kimura, H. Kishimoto, S. Kitamura, K. Kiyono, N. Kobayashi, K. Kodama, Y. Kurihata, Y. Koide, T. Koike, M. Komata, I. Kondo, S. Konoshima, H. Kubo, S. Kunieda, K. Kurihara, M. Kuriyama, M. Kusaka, Y. Kusama, T. Kushima, Y. Mabuti, S. Maehara, K. Maeno, T. Matoba, S. Matsuda, M. Matsukawa, T. Matsukawa, M. Matsuoka, Y. Matsuzaki, Y. Miura, N. Miya, K. Miyachi, Y. Miyo, M. Mizuno, K. Mogaki, S. Moriyama, Y. Murakami, M. Muto, M. Nagami, K. Nagase, A. Nagashima, K. Nagashima, T. Nagashima, S. Nagaya, O. Naito, H. Nakamura, H. Nemoto, M. Nemoto, Y. Neyatani, H. Ninomiya, N. Nishino, T. Nishitani, H. Nobusaka, H. Nomata, K. Obara, K. Odajima, Y. Ogawa, N. Ogiwara, T. Ohga, Y. Ohara, H. Oohara, T. Ohshima, K. Ohta, M. Ohta, S. Ohuchi, Y. Ohuchi, H. Okumura, Y. Okumura, K. Omori, S. Omori, Y. Omori, T. Ozeki, M. Saegusa, N. Saitoh, A. Sakasai, S. Sakata, T. Sasajima, K. Sato, M. Sato, M. Sato, M. Sawahata, T. Sebata, M. Seimiya, M. Seki, S. Seki, K. Shibanuma, M. Shimada, R. Shimada, K. Shimizu, M. Shimizu, Y. Shimomura, S. Shinozaki, H. Shirai, H. Shirakata, M. Shitomi, K. Suganuma, T. Sugawara, T. Sugie, H. Sunaoshi, M. Suzuki, M. Suzuki, N. Suzuki, S. Suzuki, H. Tachibana, M. Takahashi, S. Takahashi, T. Takahashi, M. Takasaki, H. Takatsu, H. Takeuchi, A. Takeshita, T. Takizuka, S. Tamura, S. Tanaka, T. Tanaka, Y. Tanaka, K. Tani, M. Terakado, T. Terakado, K. Tobita, T. Totsuka, N. Toyoshima, F. Tsuda, T. Tsugita, S. Tsuji, Y. Tsukahara, M. Tsuneoka, K. Uehara, Y. Uramoto, H. Usami, K. Ushigusa, K. Usui, J. Yagyu, M. Yamagiwa, M. Yamamoto, O. Yamashita, T. Yamazaki, K. Yokokura, K. Yokoyama, K. Yoshikawa, H. Yoshida, R. Yoshino, Y. Yoshioka, I. Yonekawa, T. Yoneda, K. Watanabe

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Emphases in JT-60 experiments are placed on (1) lower-hybrid (LH) current drive characteristics with a multi-junction type launcher, and (2) the confinement study with combination of neutral beam injection LH current drive and pellet injection. The new multi-junction LH launcher provides a sharp N/sub /// spectrum with high directivity for N/sub ///=1-3.4. The current drive efficiency and the radial distribution of high energy electron production show clear correlation with injected N/sub ///: the current drive efficiency has the maximum at low N/sub ///( approximately 1.3) while flattening of plasma current is more effective in large N/sub ///. A broad radial distribution of high energy electron current and approximately 30% reduction in sawtooth inversion radius were obtained by high N/sub /// ( approximately 2.5) LH injection. To fully suppress the sawtooth activity, low N/sub /// ( approximately 1.3) injection was found to be more effective. Improved energy confinement has been obtained with hydrogen pellet injection. Energy confinement time was enhanced up to 40% relative to usual gas fuelled discharges. The discharge has a strongly peaked electron density profile with ne(0)/(ne) approximately 5 and ne(0) approximately 2.0*1020 m-3. The improved discharges are characterized by a strongly peaked pressure profile within the q=1 magnetic surface, and degrades when a large sawtooth recovers or the pressure gradient may reach a critical value. When large (3 mm, 4 mm) and fast (2.2 km/s) pellets were injected, 30% energy confinement improvement was obtained even during the NB heating of 14 MW. Further investigations of IDC characteristics have been made. The oxygen impurity lines from the main plasma and the main radiative loss drop first. Then the plasma stored energy starts to rise. The particle recycling is reduced around the main plasma, and is localized in the neighborhood of the X-point with a time lag of approximately 0.2 sec. Eventually the discharge shows a significant remote radiative cooling power at the divertor region.

Original languageEnglish
Article number009
Pages (from-to)1597-1612
Number of pages16
JournalPlasma Physics and Controlled Fusion
Issue number10
Publication statusPublished - 1989


Dive into the research topics of 'Recent results in JT-60 experiments'. Together they form a unique fingerprint.

Cite this