TY - JOUR
T1 - Reconstruction of a 2D seismic wavefield by seismic gradiometry
AU - Maeda, Takuto
AU - Nishida, Kiwamu
AU - Takagi, Ryota
AU - Obara, Kazushige
N1 - Funding Information:
We thank the data center of NIED for providing high-quality seismic data from Hi-net. The hypocenter location was obtained from the Japan Meteorological Agency hypocenter catalog. The Japan Integrated Velocity Structure Model (Koketsu et al. 2012) with modifications was used as the structural model for the numerical simulation. We used the gridded bathymetry dataset JTOPO30v2 provided by the Marine Information Research Center, Japan Hydrographic Association. The numerical simulation in this study was performed with the EIC computer system at the Earthquake Information Center of the Earthquake Research Institute, the University of Tokyo. We express our gratitude to Nori Nakata and an anonymous reviewer for their insightful comments and suggestions. This work was partly supported by the Earthquake Research Institute Cooperative Research Program (2015-B-01).
Funding Information:
We thank the data center of NIED for providing high-quality seismic data from Hi-net. The hypocenter location was obtained from the Japan Meteorological Agency hypocenter catalog. The Japan Integrated Velocity Structure Model (Koketsu et al. 2012) with modifications was used as the structural model for the numerical simulation. We used the gridded bathymetry dataset JTOPO30v2 provided by the Marine Information Research Center, Japan Hydrographic Association. The numerical simulation in this study was performed with the EIC computer system at the Earthquake Information Center of the Earthquake Research Institute, the University of Tokyo. We express our gratitude to Nori Nakata and an anonymous reviewer for their insightful comments and suggestions. This work was partly supported by the Earthquake Research Institute Cooperative Research Program (2015-B-01). TM was funded by the Japan Society for the Promotion of Science (JSPS), KAKENHI Grant number15 K16306. TM, KN, and RT participated in the theoretical development, and TM carried out the data analysis and numerical simulation. KO conceived the study and contributed to the concepts and design of important intellectual components of the paper. All authors contributed to the drafting of the manuscript. All authors read and approved the final manuscript. The authors declare that they have no competing interests. An erratum to this article is available at http://dx.doi.org/10.1186/s40645-016-0113-6.
Publisher Copyright:
© 2016, The Author(s).
PY - 2016/12/1
Y1 - 2016/12/1
N2 - We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
AB - We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
KW - Array signal processing
KW - Numerical simulation
KW - Scattering
KW - Seismic gradiometry
KW - Surface waves
UR - http://www.scopus.com/inward/record.url?scp=85015170262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015170262&partnerID=8YFLogxK
U2 - 10.1186/s40645-016-0107-4
DO - 10.1186/s40645-016-0107-4
M3 - Article
AN - SCOPUS:85015170262
SN - 2197-4284
VL - 3
JO - Progress in Earth and Planetary Science
JF - Progress in Earth and Planetary Science
IS - 1
M1 - 31
ER -