TY - JOUR
T1 - Reconstruction of ocean environment time series since the late nineteenth century using sclerosponge geochemistry in the northwestern subtropical Pacific
AU - Asami, Ryuji
AU - Matsumori, Taketo
AU - Shinjo, Ryuichi
AU - Uemura, Ryu
AU - Miyaoka, Yuki
AU - Mizuyama, Masaru
AU - Ise, Yuji
AU - Sakamaki, Takashi
N1 - Funding Information:
This research was supported by the Japan Society for the Promotion of Science KAKENHI (Grant-in-Aid for Scientific Research) Grant numbers 26550012, 26707028, and 18K18522 to RA and 15H01729 to RU, and the NEXT Program Grant Number GR083 to TS.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - The geochemistry of calcifying marine organisms is an excellent proxy for reconstructing paleoceanographic history, but studies of hypercalcified demosponges (sclerosponges) are considerably fewer than those of corals, foraminifers, and bivalves. For this study, we first generated near-annual resolved stable carbon and oxygen isotope (δ13C and δ18O) and element/Ca ratios (Sr/Ca, Ba/Ca, Pb/Ca, U/Ca) time series for 1880–2015 from sclerosponge samples (Acanthochaetetes wellsi) collected at Miyako Island and Okinawa Island in the Ryukyu Islands of southwestern Japan. The δ13C records exhibited a typical variation of anthropogenically derived Suess effects, demonstrating that the rates of decrease of –0.0043‰/year before 1960 and – 0.024‰/year after 1960 in the northwestern subtropical Pacific were respectively similar to and about 1.4 times higher than those of the Caribbean Sea in the tropical Atlantic. Spectral analysis of the δ18O time series revealed significant periodicity of approximately 2, 3, 6.5, 7–10, and 20–30 year/cycle, indicating that sea surface conditions in the southern Ryukyu Islands had been dominated by interannual and decadal variations in temperature and seawater δ18O since the late nineteenth century. The Sr/Ca and U/Ca ratios for the species A. wellsi (high-Mg calcite) might not be a robust proxy for seawater temperatures, unlike Astrosclera willeyana and Ceratoporella nicholsoni sclerosponges (aragonite). An evident increasing Pb/Ca trend after 1950 found in the samples is probably attributable to Pb emissions from industrial activities and atmospheric aerosols in eastern Asian countries. The Ba/Ca variations differ greatly among sampling sites, which might be attributable to the respective local environments. This evidence demonstrates that more high-resolution age determinations and geochemical profilings enable delineation of secular variations in ocean environments on annual and interannual timescales. Results of our study suggest that if sclerosponges living in deeper ocean environments are collected, spatial and vertical oceanographic variations for the last several centuries will be reconstructed along with coral proxy records. [Figure not available: see fulltext.]
AB - The geochemistry of calcifying marine organisms is an excellent proxy for reconstructing paleoceanographic history, but studies of hypercalcified demosponges (sclerosponges) are considerably fewer than those of corals, foraminifers, and bivalves. For this study, we first generated near-annual resolved stable carbon and oxygen isotope (δ13C and δ18O) and element/Ca ratios (Sr/Ca, Ba/Ca, Pb/Ca, U/Ca) time series for 1880–2015 from sclerosponge samples (Acanthochaetetes wellsi) collected at Miyako Island and Okinawa Island in the Ryukyu Islands of southwestern Japan. The δ13C records exhibited a typical variation of anthropogenically derived Suess effects, demonstrating that the rates of decrease of –0.0043‰/year before 1960 and – 0.024‰/year after 1960 in the northwestern subtropical Pacific were respectively similar to and about 1.4 times higher than those of the Caribbean Sea in the tropical Atlantic. Spectral analysis of the δ18O time series revealed significant periodicity of approximately 2, 3, 6.5, 7–10, and 20–30 year/cycle, indicating that sea surface conditions in the southern Ryukyu Islands had been dominated by interannual and decadal variations in temperature and seawater δ18O since the late nineteenth century. The Sr/Ca and U/Ca ratios for the species A. wellsi (high-Mg calcite) might not be a robust proxy for seawater temperatures, unlike Astrosclera willeyana and Ceratoporella nicholsoni sclerosponges (aragonite). An evident increasing Pb/Ca trend after 1950 found in the samples is probably attributable to Pb emissions from industrial activities and atmospheric aerosols in eastern Asian countries. The Ba/Ca variations differ greatly among sampling sites, which might be attributable to the respective local environments. This evidence demonstrates that more high-resolution age determinations and geochemical profilings enable delineation of secular variations in ocean environments on annual and interannual timescales. Results of our study suggest that if sclerosponges living in deeper ocean environments are collected, spatial and vertical oceanographic variations for the last several centuries will be reconstructed along with coral proxy records. [Figure not available: see fulltext.]
KW - Acanthochaetetes wellsi
KW - Isotope equilibrium
KW - Minor and trace elements
KW - Oxygen and carbon isotopic composition
KW - Paleoenvironmental proxy
KW - Ryukyu Islands
KW - Sclerosponge
UR - http://www.scopus.com/inward/record.url?scp=85108967639&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108967639&partnerID=8YFLogxK
U2 - 10.1186/s40645-021-00434-7
DO - 10.1186/s40645-021-00434-7
M3 - Article
AN - SCOPUS:85108967639
SN - 2197-4284
VL - 8
JO - Progress in Earth and Planetary Science
JF - Progress in Earth and Planetary Science
IS - 1
M1 - 38
ER -