Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)

Yung Han Huang, Sea Fue Wang, Ampo Sai, Satoshi Kameoka

    Research output: Contribution to journalArticlepeer-review

    63 Citations (Scopus)


    In this study, various Cu-based spinel compounds, i.e., CuFe 2O4, CuMn2O4, CuAl2O 4 and CuLa2O4, were fabricated by a solid-state reaction method. Reduction behaviors and morphological changes of these materials have been characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the catalytic properties for steam reforming of methanol (SRM) of these Cu-based spinel compounds were investigated. H2-TPR results indicated that the reducibility of Cu-based spinel compounds was strongly dependent on the B-site component while the CuFe2O4 catalyst revealed the lowest reduction temperature (190 C), followed respectively by CuAl2O 4 (267 C), CuMn2O4 (270 C), and CuLa 2O4 (326 C). The reduced CuAl2O4 catalyst demonstrated the best performance in terms of catalytic activity. Based on the SEM and XRD results, pulverization of the CuAl2O4 particles due to gas evolution and a high concentration of nanosized Cu particles (≈50.9 nm) precipitated on the surfaces of the Al2O 3 support were observed after reduction at 360 C in H2. The BET surface area of the CuAl2O4 catalyst escalated from 5.5 to 13.2 m2/g. Reduction of Cu-based spinel ferrites appear to be a potential synthesis route for preparing a catalyst with high catalytic activity and thermal stability. The catalytic performance of these copper-oxide composites was superior to those of conventional copper catalysts.

    Original languageEnglish
    Pages (from-to)4541-4551
    Number of pages11
    JournalCeramics International
    Issue number3
    Publication statusPublished - 2014 Apr 1


    • Catalyst
    • Cu-based spinel compounds
    • Steam reforming of methanol (SRM)

    ASJC Scopus subject areas

    • Ceramics and Composites
    • Process Chemistry and Technology
    • Electronic, Optical and Magnetic Materials
    • Surfaces, Coatings and Films
    • Materials Chemistry


    Dive into the research topics of 'Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)'. Together they form a unique fingerprint.

    Cite this