Reference Models for Lithospheric Geoneutrino Signal

S. A. Wipperfurth, O. Šrámek, W. F. McDonough

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Debate continues on the amount and distribution of radioactive heat producing elements (i.e., U, Th, and K) in the Earth, with estimates for mantle heat production varying by an order of magnitude. Constraints on the bulk-silicate Earth's (BSE) radiogenic power also places constraints on overall BSE composition. Geoneutrino detection is a direct measure of the Earth's decay rate of Th and U. The geoneutrino signal has contributions from the local ((Formula presented.) 40%) and global ((Formula presented.) 35%) continental lithosphere and the underlying inaccessible mantle ((Formula presented.) 25%). Geophysical models are combined with geochemical data sets to predict the geoneutrino signal at current and future geoneutrino detectors. We propagated uncertainties, both chemical and physical, through Monte Carlo methods. Estimated total signal uncertainties are on the order of (Formula presented.) 20%, proportionally with geophysical and geochemical inputs contributing (Formula presented.) 30% and (Formula presented.) 70%, respectively. We find that estimated signals, calculated using CRUST2.0, CRUST1.0, and LITHO1.0, are within physical uncertainty of each other, suggesting that the choice of underlying geophysical model will not change results significantly, but will shift the central value by up to (Formula presented.) 15%. Similarly, we see no significant difference between calculated layer abundances and bulk crustal heat production when using these geophysical models. The bulk crustal heat production is calculated as 7 (Formula presented.) 2 TW, which includes an increase of 1 TW in uncertainty relative to previous studies. Combination of our predicted lithospheric signal with measured signals yield an estimated BSE heat production of 21.5 (Formula presented.) 10.4 TW. Future improvements, including uncertainty attribution and near-field modeling, are discussed.

Original languageEnglish
Article numbere2019JB018433
JournalJournal of Geophysical Research: Solid Earth
Volume125
Issue number2
DOIs
Publication statusPublished - 2020 Feb 1

Keywords

  • CRUST1.0
  • CRUST2.0
  • LITHO1.0
  • U-Th-K
  • geoneutrino
  • heat production

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Reference Models for Lithospheric Geoneutrino Signal'. Together they form a unique fingerprint.

Cite this