Abstract
On the basis of a waveform similarity analysis, we detected 321 earthquake clusters with very similar (cross-correlation coefficient >0.95) waveforms on the plate boundary in the northeastern Japan subduction zone. Most of them were not found within the subducting Pacific plate with a few exceptions. Moreover, even on the plate boundary, they were not located in the large moment release areas of large interplate earthquakes that occurred recently or in the areas where the plates are inferred to be strongly coupled from GPS data analyses. These observations suggest that these similar earthquakes are caused by repeating slips of small asperities with a dimension of around 0.1 to 1 km surrounded by stable sliding areas on the plate boundary. If the aseismic slip portion in these small asperities is negligible, we can estimate the cumulative amount of aseismic slip in the area surrounding each asperity. In other words, repeating earthquake data potentially can be used to estimate the spatiotemporal aseismic slip distribution on the plate boundary. We estimated the spatial distribution of slip rate on the plate boundary from repeating earthquake data. The scaling relation between seismic moment and seismic slip by Nadeau and Johnson [1998] is used for the estimation of the slip amount by each repeating earthquake cluster. Obtained spatial distribution is consistent with that estimated from GPS data on land.
Original language | English |
---|---|
Pages (from-to) | ESE 8-1 - 8-9 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 108 |
Issue number | 5 |
Publication status | Published - 2003 May 10 |
Keywords
- Aseismic slip
- Asperity
- Repeating earthquake