TY - JOUR
T1 - Reperfusion and neurovascular dysfunction in stroke
T2 - From basic mechanisms to potential strategies for neuroprotection
AU - Jung, Joo Eun
AU - Kim, Gab Seok
AU - Chen, Hai
AU - Maier, Carolina M.
AU - Narasimhan, Purnima
AU - Song, Yun Seon
AU - Niizuma, Kuniyasu
AU - Katsu, Masataka
AU - Okami, Nobuya
AU - Yoshioka, Hideyuki
AU - Sakata, Hiroyuki
AU - Goeders, Christina E.
AU - Chan, Pak H.
PY - 2010/6
Y1 - 2010/6
N2 - Effective stroke therapies require recanalization of occluded cerebral blood vessels. However, reperfusion can cause neurovascular injury, leading to cerebral edema, brain hemorrhage, and neuronal death by apoptosis/necrosis. These complications, which result from excess production of reactive oxygen species in mitochondria, significantly limit the benefits of stroke therapies. We have developed a focal stroke model using mice deficient in mitochondrial manganese-superoxide dismutase (SOD2-/+) to investigate neurovascular endothelial damage that occurs during reperfusion. Following focal stroke and reperfusion, SOD2-/+ mice had delayed blood-brain barrier breakdown, associated with activation of matrix metalloproteinase and high brain hemorrhage rates, whereas a decrease in apoptosis and hemorrhage was observed in SOD2 overexpressors. Thus, induction and activation of SOD2 is a novel strategy for neurovascular protection after ischemia/reperfusion. Our recent study identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse SOD2 gene. During reperfusion, activation of STAT3 and its recruitmen into the SOD2 gene were blocked, resulting in increased oxidative stress and neuronal apoptosis. In contrast, pharmacological activation of STAT3 induced SOD2 expression, which limits ischemic neuronal death. Our studies point to antioxidant-based neurovascular protective strategies as potential treatments to expand the therapeutic window of currently approved therapies.
AB - Effective stroke therapies require recanalization of occluded cerebral blood vessels. However, reperfusion can cause neurovascular injury, leading to cerebral edema, brain hemorrhage, and neuronal death by apoptosis/necrosis. These complications, which result from excess production of reactive oxygen species in mitochondria, significantly limit the benefits of stroke therapies. We have developed a focal stroke model using mice deficient in mitochondrial manganese-superoxide dismutase (SOD2-/+) to investigate neurovascular endothelial damage that occurs during reperfusion. Following focal stroke and reperfusion, SOD2-/+ mice had delayed blood-brain barrier breakdown, associated with activation of matrix metalloproteinase and high brain hemorrhage rates, whereas a decrease in apoptosis and hemorrhage was observed in SOD2 overexpressors. Thus, induction and activation of SOD2 is a novel strategy for neurovascular protection after ischemia/reperfusion. Our recent study identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse SOD2 gene. During reperfusion, activation of STAT3 and its recruitmen into the SOD2 gene were blocked, resulting in increased oxidative stress and neuronal apoptosis. In contrast, pharmacological activation of STAT3 induced SOD2 expression, which limits ischemic neuronal death. Our studies point to antioxidant-based neurovascular protective strategies as potential treatments to expand the therapeutic window of currently approved therapies.
KW - CK2
KW - Cerebral ischemia
KW - Mitochondria
KW - Mn-SOD
KW - NADPH oxidase
KW - Neuroprotective signaling
KW - Oxidative stress
KW - Reactive oxygen species
KW - STAT3
UR - http://www.scopus.com/inward/record.url?scp=77954201785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954201785&partnerID=8YFLogxK
U2 - 10.1007/s12035-010-8102-z
DO - 10.1007/s12035-010-8102-z
M3 - Article
C2 - 20157789
AN - SCOPUS:77954201785
SN - 0893-7648
VL - 41
SP - 172
EP - 179
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 2-3
ER -