Abstract
We give the definition of Lp-convergence of tensor fields with respect to the Gromov-Hausdorff topology and several fundamental properties of the convergence. We apply this to establish a Bochner-type inequality which keeps the term of Hessian on the Gromov-Hausdorff limit space of a sequence of Riemannian manifolds with a lower Ricci curvature bound and to give a geometric explicit formula for the Dirichlet Laplacian on a limit space defined by Cheeger-Colding. We also prove the continuity of the first eigenvalues of the p-Laplacian with respect to the Gromov-Hausdorff topology.
Original language | English |
---|---|
Pages (from-to) | 85-154 |
Number of pages | 70 |
Journal | Journal fur die Reine und Angewandte Mathematik |
Volume | 2015 |
Issue number | 705 |
DOIs | |
Publication status | Published - 2015 Aug 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics