Abstract
The present study is related to the rimming flow of non-Newtonian fluid on the inner surface of a horizontal rotating cylinder. Using a scale analysis, the main characteristic scales and non-dimensional parameters, which describe the principal features of the process, are found. Exploiting the fact that one of the parameters is very small, an approximate asymptotic mathematical model of the process is developed and justified. For a wide range of fluids, a general constitutive law can be presented by a single function relating shear stress and shear rate that corresponds to a generalized Newtonian model. For this case, the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a steady-state solution is proved. Within the bounds stipulated by this condition, film thickness admits a continuous solution, which corresponds to subcritical and critical flow regimes. It is proved that for the critical regime solution has a corner on the rising wall of the cylinder. In the supercritical flow regime, a discontinuous solution is possible and a hydraulic jump may occur. It is shown that straightforward leading order steady-state theory can work well to study the shock location and height. For the particular case of a power-law model, the analytical solution of steady-state equation for the fluid film thickness is found in explicit form. More complex rheological models, which show linear Newtonian behavior at low shear rates with transition to power-law at moderate shear rates, are also considered. In particular, numerical computations were carried out for Ellis model. For this model, some analytical asymptotic solutions have been also obtained in explicit form and compared with the results of numerical computations. Based on these solutions, the optimal values of parameters, which should be used in the Ellis equation for correct simulation of coating flows, are determined; the criteria that guarantee the steady-state continuous solutions are defined; the size and location of the stationary hydraulic jumps, which form when the flow is in the supercritical state, are obtained for the different flow parameters.
Original language | English |
---|---|
Article number | IMECE2004-61443 |
Pages (from-to) | 871-874 |
Number of pages | 4 |
Journal | American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED |
Volume | 260 |
DOIs | |
Publication status | Published - 2004 |
Event | 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004 - Anaheim, CA, United States Duration: 2004 Nov 13 → 2004 Nov 19 |