TY - JOUR
T1 - Role of ephrinB2 in nonproductive angiogenesis induced by Delta-like 4 blockade
AU - Yamanda, Shinsuke
AU - Ebihara, Satoru
AU - Asada, Masanori
AU - Okazaki, Tatsuma
AU - Niu, Kaijun
AU - Ebihara, Takae
AU - Koyanagi, Akemi
AU - Yamaguchi, Noriko
AU - Yagita, Hideo
AU - Arai, Hiroyuki
PY - 2009/4/9
Y1 - 2009/4/9
N2 - Delta-like 4 (DLL4) is one of the Notch ligands and plays an important role in vascular development. DLL4 blockade inhibits tumor growth by promoting nonproductive angiogenesis, which is characterized by an increase in vascular density and decrease in tissue perfusion. However, a detailed mechanism remains unclear. In this study, newly developed neutralizing antibodies against mouse and human DLL4 were used to investigate the possible involvement of VEGF-DLL4- ephrinB2 cascade in nonproductive an-giogenesis caused by DLL4 blockade. DLL4 blockade and soluble ephrinB2 treatment suppressed tumor growth and induced nonproductive angiogenesis. DLL4 was expressed in subcutaneous tumors, and DLL4 blockade suppressed ephrinB2 expression in the tumors. DLL4 blockade significantly promoted human umbilical vein endothelial cell (HUVEC) proliferation in vitro, and the effect was additive to that of VEGF. Both DLL4 blockade and VEGF significantly increased cord length and branch points in a tubular formation assay. Expression of ephrinB2 in HUVECs was enhanced by VEGF alone, and the enhancement was inhibited by DLL4 blockade. Moreover, when we studied the effect of ephrinB2 RNA interference on HUVEC tubular formation, knockdown of ephrinB2 mimicked the effect of DLL4. These results suggest that eph- rinB2 plays a crucial role in nonproductive angiogenesis caused by DLL4 blockade.
AB - Delta-like 4 (DLL4) is one of the Notch ligands and plays an important role in vascular development. DLL4 blockade inhibits tumor growth by promoting nonproductive angiogenesis, which is characterized by an increase in vascular density and decrease in tissue perfusion. However, a detailed mechanism remains unclear. In this study, newly developed neutralizing antibodies against mouse and human DLL4 were used to investigate the possible involvement of VEGF-DLL4- ephrinB2 cascade in nonproductive an-giogenesis caused by DLL4 blockade. DLL4 blockade and soluble ephrinB2 treatment suppressed tumor growth and induced nonproductive angiogenesis. DLL4 was expressed in subcutaneous tumors, and DLL4 blockade suppressed ephrinB2 expression in the tumors. DLL4 blockade significantly promoted human umbilical vein endothelial cell (HUVEC) proliferation in vitro, and the effect was additive to that of VEGF. Both DLL4 blockade and VEGF significantly increased cord length and branch points in a tubular formation assay. Expression of ephrinB2 in HUVECs was enhanced by VEGF alone, and the enhancement was inhibited by DLL4 blockade. Moreover, when we studied the effect of ephrinB2 RNA interference on HUVEC tubular formation, knockdown of ephrinB2 mimicked the effect of DLL4. These results suggest that eph- rinB2 plays a crucial role in nonproductive angiogenesis caused by DLL4 blockade.
UR - http://www.scopus.com/inward/record.url?scp=65349098016&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65349098016&partnerID=8YFLogxK
U2 - 10.1182/blood-2008-07-170381
DO - 10.1182/blood-2008-07-170381
M3 - Article
C2 - 19218547
AN - SCOPUS:65349098016
SN - 0006-4971
VL - 113
SP - 3631
EP - 3639
JO - Blood
JF - Blood
IS - 15
ER -