Abstract
Advances in remote sensing technologies have enabled effective drought monitoring globally, even in data-limited areas. However, the negative impact of drought on crop yields still necessitates stakeholders to make informed decisions according to its severity. This research proposes an algorithm to combine a drought monitoring model, based on rainfall, land surface temperature (LST), and normalized difference vegetation index/leaf area index (NDVI/LAI) satellite products, with a crop simulation model to assess drought impact on rice yields in Thailand. Typical crop simulation models can provide yield information, but the requirement for a complicated set of inputs prohibits their potential due to insufficient data. This work utilizes a rice crop simulation model called the Simulation Model for Use with Remote Sensing (SIMRIW-RS), whose inputs can mostly be satisfied by such satellite products. Based on experimental data collected during the 2018/19 crop seasons, this approach can successfully provide a drought monitoring function as well as effectively estimate the rice yield with mean absolute percentage error (MAPE) around 5%. In addition, we show that SIMRIW-RS can reasonably predict the rice yield when historical weather data is available. In effect, this research contributes a methodology to assess the drought impact on rice yields on a farm to regional scale, relevant to crop insurance and adaptation schemes to mitigate climate change.
Original language | English |
---|---|
Article number | 2099 |
Journal | Remote Sensing |
Volume | 12 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2020 Jul 1 |
Keywords
- Crop simulation
- Drought assessment
- LAI
- LST
- NDVI
- Yield estimation