Scaled telemanipulation system using semi-autonomous task-oriented virtual tool

Kazuhiro Kosuge, Tomotaka Itoh, Toshio Fukuda, Manabu Otsuka

Research output: Contribution to conferencePaperpeer-review

2 Citations (Scopus)

Abstract

This paper proposes an alternative control algorithm for a scaled telemanipulation system based on a semi-autonomous task-oriented virtual tool. In the algorithm a telemanipulator is controlled so that it has a virtual tool dynamics. The virtual tool dynamics designed appropriately for a given task is to assist an operator as a tool and the operator executes the task easily with the tool. In addition, the motion and force relation between the master and the slave can be specified freely by using two scaling factors; a motion scaling factor and a force scaling factor. The stability of the resultant system is analyzed based on the passivity of the resultant system and the total stability is guaranteed for an operator and a passive environment with unknown dynamics. The proposed algorithm is experimentally applied to a telemanipulator. The experimental results illustrate the validity of the algorithm.

Original languageEnglish
Pages124-129
Number of pages6
Publication statusPublished - 1995 Jan 1
EventProceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Part 3 (of 3) - Pittsburgh, PA, USA
Duration: 1995 Aug 51995 Aug 9

Other

OtherProceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Part 3 (of 3)
CityPittsburgh, PA, USA
Period95/8/595/8/9

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Scaled telemanipulation system using semi-autonomous task-oriented virtual tool'. Together they form a unique fingerprint.

Cite this